Close Menu
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

Republican “big beautiful” budget bill means your money

The Truth Berns: How Democrats became undemocratic long before Donald Trump | World News

Instead of Timothée Chalamett or Tom Holland, Sean Penn declares the Oscar-winning actress “the last movie star.” Hollywood

Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
Facebook X (Twitter) Instagram Pinterest Vimeo
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World
Karachi Chronicle
You are at:Home » Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy
AI

Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy

Adnan MaharBy Adnan MaharDecember 10, 2024No Comments12 Mins Read2 Views
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Witten, J., Hu, Y., Langer, R. & Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2307798120 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Heymans, S. & Cooper, L. T. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat. Rev. Cardiol. 19, 75–77 (2022).

Article 
CAS 
PubMed 

Google Scholar 

vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Muramatsu, H. et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Hodges, C. A. & Conlon, R. A. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis. 6, 97–108 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ensinck, M., Mottais, A., Detry, C., Leal, T. & Carlon, M. S. On the corner of models and cure: gene editing in cystic fibrosis. Front. Pharmacol. 12, 662110 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Choi, S. H. & Engelhardt, J. F. Gene therapy for cystic fibrosis: lessons learned and paths forward. Mol. Ther. 29, 428–430 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Ruigrok, M. J. R., Frijlink, H. W., Melgert, B. N., Olinga, P. & Hinrichs, W. L. J. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Mol. Ther. Methods Clin. Dev. 20, 483–496 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bai, X. et al. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci. Adv. 8, eabn7162 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, R. et al. Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv. Mater. 34, e2107506 (2022).

Article 
PubMed 

Google Scholar 

Guan, S., Darmstädter, M., Xu, C. & Rosenecker, J. In vitro investigations on optimizing and nebulization of IVT-mRNA formulations for potential pulmonary-based alpha-1-antitrypsin deficiency treatment. Pharmaceutics 13, 1281 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wu, D.-D. et al. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol. Ther. 182, 1–14 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Woo, C. J. et al. Inhaled delivery of a lipid nanoparticle encapsulated messenger RNA encoding a ciliary protein for the treatment of primary ciliary dyskinesia. Pulm. Pharmacol. Ther. 75, 102134 (2022).

Article 
CAS 
PubMed 

Google Scholar 

da Silva, A. L. et al. Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Sci. Adv. 6, eaay7973 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zeyer, F. et al. mRNA-mediated gene supplementation of Toll-like receptors as treatment strategy for asthma in vivo. PLoS ONE 11, e0154001 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2370001 (2023).

Article 

Google Scholar 

Lam, K. et al. Unsaturated, trialkyl ionizable lipids are versatile LNP components for therapeutic and vaccine applications. Adv. Mater. 35, 2209624 (2023).

Article 
CAS 

Google Scholar 

Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e13 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Soleimany, A. P. et al. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent. Sci. 7, 1356–1367 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Ryan, K. A. et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat. Commun. 12, 81 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rosen, B. H. et al. Animal and model systems for studying cystic fibrosis. J. Cyst. Fibros. 17, S28–S34 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Yuan, F. et al. Transgenic ferret models define pulmonary ionocyte diversity and function. Nature 621, 857–867 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Boucher, R. C. Muco-obstructive lung diseases. N. Engl. J. Med. 380, 1941–1953 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01082-6 (2023).

Jiang, A. Y. et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364–375 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

Article 
CAS 

Google Scholar 

Zhou, K. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl Acad. Sci. USA 113, 520–525 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lee, S. M. et al. A systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angew. Chem. 133, 5912–5917 (2021).

Article 

Google Scholar 

Li, L. et al. A biomimetic lipid library for gene delivery through thiol-yne click chemistry. Biomaterials 33, 8160–8166 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Heid, E. et al. Chemprop: a machine learning package for chemical property prediction. J. Chem. Inf. Model. 64, 9–17 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

Article 
CAS 
PubMed 

Google Scholar 

He, Z. et al. A multidimensional approach to modulating ionizable lipids for high-performing and organ-selective mRNA delivery. Angew. Chem. Int. Ed. 62, e202310401 (2023).

Article 
CAS 

Google Scholar 

Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fischer, A. J. et al. Mucus strands from submucosal glands initiate mucociliary transport of large particles. JCI Insight 4, e124863 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ostedgaard, L. S. et al. Lack of airway submucosal glands impairs respiratory host defenses. eLife 9, e59653 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tata, P. R. & Rajagopal, J. Plasticity in the lung: making and breaking cell identity. Development 144, 755–766 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Shah, V. S., Chivukula, R. R., Lin, B., Waghray, A. & Rajagopal, J. Cystic fibrosis and the cells of the airway epithelium: what are ionocytes and what do they do? Annu. Rev. Pathol. Mech. Dis. 17, 23–46 (2022).

Article 
CAS 

Google Scholar 

Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Witten, J. & Collins, E. LNP ML. GitHub https://github.com/jswitten/LNP_ML (2024).

Guo, Z. et al. Diffusion models in bioinformatics and computational biology. Nat. Rev. Bioeng. 2, 136–154 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Reverberi, C. et al. Experimental evidence of effective human–AI collaboration in medical decision-making. Sci. Rep. 12, 14952 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xu, Y., Golubovic, A., Xu, S., Pan, A. & Li, B. Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. J. Mater. Chem. B 11, 6527–6539 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Du, S. et al. Cholesterol-amino-phosphate (CAP) derived lipid nanoparticles for delivery of self-amplifying RNA and restoration of spermatogenesis in infertile mice. Adv. Sci. 10, 2300188 (2023).

Article 
CAS 

Google Scholar 

Andries, O. et al. Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol. Pharm. 9, 2136–2145 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Oyama, R. et al. An ionizable lipid material with a vitamin E scaffold as an mRNA vaccine platform for efficient cytotoxic T cell responses. ACS Nano 17, 18758–18774 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Goldman, R. L. et al. Understanding structure activity relationships of good HEPES lipids for lipid nanoparticle mRNA vaccine applications. Biomaterials 301, 122243 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Yan, Z., McCray, P. B. Jr & Engelhardt, J. F. Advances in gene therapy for cystic fibrosis lung disease. Hum. Mol. Genet. 28, R88–R94 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lee, J.-A. et al. Gene therapy for cystic fibrosis: new tools for precision medicine. J. Transl. Med. 19, 452 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Boucher, R. C. Status of gene therapy for cystic fibrosis lung disease. J. Clin. Invest. 103, 441–445 (1999).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ulrich, M. et al. Alveolar inflammation in cystic fibrosis. J. Cyst. Fibros. 9, 217–227 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lin, C.-R., Bahmed, K. & Kosmider, B. Impaired alveolar re-epithelialization in pulmonary emphysema. Cells 11, 2055 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Ferguson, L. T. et al. Mechanisms by which liposomes improve inhaled drug delivery for alveolar diseases. Adv. NanoBiomed Res. 3, 2200106 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yu, M. et al. Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus. Sci. Rep. 9, 1971 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tang, Y. et al. Repeat dosing of AAV2.5T to ferret lungs elicits an antibody response that diminishes transduction in an age-dependent manner. Mol. Ther. Methods Clin. Dev. 19, 186–200 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tang, Y. et al. Immunosuppression reduces rAAV2.5T neutralizing antibodies that limit efficacy following repeat dosing to ferret lungs. Mol. Ther. Methods Clin. Dev. 29, 70–80 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Telegram Email
Previous Article8 Most Exciting Warner Bros. Movies Coming Out In 2025
Next Article OpenAI announces Sora Turbo: Text-to-video AI for ChatGPT Plus and Pro users. View details
Adnan Mahar
  • Website

Adnan is a passionate doctor from Pakistan with a keen interest in exploring the world of politics, sports, and international affairs. As an avid reader and lifelong learner, he is deeply committed to sharing insights, perspectives, and thought-provoking ideas. His journey combines a love for knowledge with an analytical approach to current events, aiming to inspire meaningful conversations and broaden understanding across a wide range of topics.

Related Posts

Google, Nvidia invests in AI startup Safe Superintelligence, co-founder of Openai Ilya Sutskever

April 14, 2025

This $30 billion AI startup can be very strange by a man who said that neural networks may already be aware of it

February 24, 2025

As Deepseek and ChatGpt Surge, is Delhi behind?

February 18, 2025
Leave A Reply Cancel Reply

Top Posts

President Trump’s SEC nominee Paul Atkins marries multi-billion dollar roof fortune

December 14, 202496 Views

Alice Munro’s Passive Voice | New Yorker

December 23, 202453 Views

20 Most Anticipated Sex Movies of 2025

January 22, 202542 Views

2025 Best Actress Oscar Predictions

December 12, 202434 Views
Don't Miss
AI April 14, 2025

Google, Nvidia invests in AI startup Safe Superintelligence, co-founder of Openai Ilya Sutskever

Alphabet and Nvidia are investing in Safe Superintelligence (SSI), a stealth mode AI startup co-founded…

This $30 billion AI startup can be very strange by a man who said that neural networks may already be aware of it

As Deepseek and ChatGpt Surge, is Delhi behind?

Openai’s Sam Altman reveals his daily use of ChatGpt, and that’s not what you think

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

About Us
About Us

Welcome to Karachi Chronicle, your go-to source for the latest and most insightful updates across a range of topics that matter most in today’s fast-paced world. We are dedicated to delivering timely, accurate, and engaging content that covers a variety of subjects including Sports, Politics, World Affairs, Entertainment, and the ever-evolving field of Artificial Intelligence.

Facebook X (Twitter) Pinterest YouTube WhatsApp
Our Picks

Republican “big beautiful” budget bill means your money

The Truth Berns: How Democrats became undemocratic long before Donald Trump | World News

Instead of Timothée Chalamett or Tom Holland, Sean Penn declares the Oscar-winning actress “the last movie star.” Hollywood

Most Popular

ATUA AI (TUA) develops cutting-edge AI infrastructure to optimize distributed operations

October 11, 20020 Views

10 things you should never say to an AI chatbot

November 10, 20040 Views

Character.AI faces lawsuit over child safety concerns

December 12, 20050 Views
© 2025 karachichronicle. Designed by karachichronicle.
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.