Klöwer, M. et al. Quantifying aviation’s contribution to global warming. Environ. Res. Lett. 16, 104027 (2021).
Google Scholar
Burkhardt, U., Bock, L. & Bier, A. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. Npj Clim. Atmos. Sci. 1, 1–7 (2018).
Google Scholar
Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 9, 1824 (2018).
Google Scholar
Lee, D. S. et al. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009).
Google Scholar
Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021).
Google Scholar
Airbus. Global Market Forecast 2018-2037, Global Networks, Global Citizens (2018).
Boeing. Commercial Market Outlook 2021-2040. https://www.boeing.com/commercial/market/commercial-market-outlook/ (2021).
Dray, L. et al. Cost and emissions pathways towards net-zero climate impacts in aviation. Nat. Clim. Change 12, 956–962 (2022).
Google Scholar
Gössling, S. & Humpe, A. The global scale, distribution and growth of aviation: Implications for climate change. Glob. Environ. Change 65, 102194 (2020).
Google Scholar
Grewe, V. et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID−19 effects. Nat. Commun. 12, 3841 (2021).
Google Scholar
Terrenoire, E., Hauglustaine, D. A., Gasser, T. & Penanhoat, O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett. 14, 084019 (2019).
Google Scholar
Gössling, S. & Humpe, A. Net-zero aviation: Time for a new business model? J. Air Transp. Manag. 107, 102353 (2023).
Google Scholar
Larsson, J., Elofsson, A., Sterner, T. & Åkerman, J. International and national climate policies for aviation: a review. Clim. Policy 19, 787–799 (2019).
Google Scholar
Scheelhaase, J., Maertens, S., Grimme, W. & Jung, M. EU ETS versus CORSIA–A critical assessment of two approaches to limit air transport’s CO2 emissions by market-based measures. J. Air Transp. Manag. 67, 55–62 (2018).
Google Scholar
Committee on Climate Change. Biomass in a Low-Carbon Economy. https://www.theccc.org.uk/publication/biomass-in-a-low-carbon-economy/ (2018).
Dooley, K., Christoff, P. & Nicholas, K. A. Co-producing climate policy and negative emissions: trade-offs for sustainable land-use. Glob. Sustain. 1, https://doi.org/10.1017/sus.2018.6 (2018).
Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).
Google Scholar
Gnadt, A. R., Speth, R. L., Sabnis, J. S. & Barrett, S. R. H. Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Prog. Aerosp. Sci. 105, 1–30 (2019).
Google Scholar
Noland, J. K. Hydrogen electric airplanes: a disruptive technological path to clean up the aviation sector. IEEE Electrification Mag. 9, 92–102 (2021).
Google Scholar
Peeters, P., Higham, J., Kutzner, D., Cohen, S. & Gössling, S. Are technology myths stalling aviation climate policy? Transp. Res. Part Transp. Environ. 44, 30–42 (2016).
Google Scholar
Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).
Google Scholar
Becattini, V., Gabrielli, P. & Mazzotti, M. Role of Carbon Capture, Storage, and Utilization to Enable a Net-Zero-CO2-Emissions Aviation Sector. Ind. Eng. Chem. Res. 60, 6848–6862 (2021).
Google Scholar
Becken, S. & Mackey, B. What role for offsetting aviation greenhouse gas emissions in a deep-cut carbon world? J. Air Transp. Manag. 63, 71–83 (2017).
Google Scholar
Bergero, C. et al. Pathways to net-zero emissions from aviation. Nat. Sustain. 6, 404–414 (2023).
Google Scholar
Brazzola, N., Patt, A. & Wohland, J. Definitions and implications of climate-neutral aviation. Nat. Clim. Change 12, 761–767 (2022).
Google Scholar
Sacchi, R. et al. How to make climate-neutral aviation fly. Nat. Commun. 14, 3989 (2023).
Google Scholar
Scheelhaase, J., Maertens, S. & Grimme, W. Synthetic fuels in aviation – Current barriers and potential political measures. Transp. Res. Procedia 43, 21–30 (2019).
Google Scholar
Terwel, R. & Kerkhoven, J. Carbon Neutral Aviation with Current Enginge Technology: The Take-off of Synthetic Kerosene Production in the Netherlands. 62. https://kalavasta.com/assets/reports/Kalavasta_Carbon_Neutral_Aviation.pdf (2018).
Timmons, D. & Terwel, R. Economics of aviation fuel decarbonization: A preliminary assessment. J. Clean. Prod. 369, 133097 (2022).
Google Scholar
Fuhrman, J. et al. Food–energy–water implications of negative emissions technologies in a +1.5 °C future. Nat. Clim. Change 10, 920–927 (2020).
Google Scholar
Fuhrman, J. et al. The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environ. Res. Lett. 16, 114012 (2021).
Terlouw, T., Treyer, K., Bauer, C. & Mazzotti, M. Life Cycle Assessment of Direct Air Carbon Capture and Storage with Low-Carbon Energy Sources. Environ. Sci. Technol. 55, 11397–11411 (2021).
Google Scholar
The Royal Society. Net Zero Aviation Fuels: Resource Requirements and Environmental Impacts. (London, UK, 2023).
Ali, M. et al. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth-Sci. Rev. 225, 103895 (2022).
Google Scholar
Andreoni, P., Emmerling, J. & Tavoni, M. Inequality repercussions of financing negative emissions. Nat. Clim. Change 1–7 https://doi.org/10.1038/s41558-023-01870-7 (2023)
Küng, L. et al. A roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storage. Energy Environ. Sci. https://doi.org/10.1039/D3EE01008B (2023)
Meckling, J. & Biber, E. A policy roadmap for negative emissions using direct air capture. Nat. Commun. 12, 2051 (2021).
Google Scholar
Nemet, G. F. How Solar Energy Became Cheap: A Model for Low-Carbon Innovation. (Routledge, 2019).
Young, J. et al. The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth 0, (2023).
Owen, A., Burke, J. & Serin, E. Who pays for BECCS and DACCS in the UK: designing equitable climate policy. Clim. Policy 22, 1050–1068 (2022).
Google Scholar
Addepalli, S., Pagalday, G., Salonitis, K. & Roy, R. Socio-economic and demographic factors that contribute to the growth of the civil aviation industry. Procedia Manuf. 19, 2–9 (2018).
Google Scholar
Nemet, G. F. et al. Near-term deployment of novel carbon removal to facilitate longer-term deployment. Joule 0, (2023).
IPCC. Global Warming of 1.5 °C.An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (2018).
IPCC. Summary for Policymakers. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).
Cames, M., Chaudry, S., Göckeler, K., Kasten, P. & Kurth, S. E.-Fuels versus DACCS. https://www.transportenvironment.org/wp-content/uploads/2021/08/2021_08_TE_study_efuels_DACCS.pdf (2021).
Braun-Unkhoff, M., Riedel, U. & Wahl, C. About the emissions of alternative jet fuels. CEAS Aeronaut. J. 8, 167–180 (2017).
Google Scholar
Voigt, C. et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Commun. Earth Environ. 2, 1–10 (2021).
Google Scholar
PwC. Green hydrogen economy – predicted development of tomorrow. PwC https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html (2023).
World Energy Council. World Energy Insights: Executive Summary Regional Insights Into Low-Carbon Hydrogen Scale-Up. https://www.worldenergy.org/assets/downloads/World_Energy_Insights_Executive_Summary_Regional_insights_into_low-carbon_hydrogen_scale_up_April_2022.pdf?v=1680701563 (2022).
Malm, A. & Carton, W. Seize the Means of Carbon Removal: The Political Economy of Direct Air Capture. Hist. Mater. 29, 3–48 (2021).
Google Scholar
Arning, K. et al. Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125, 235–249 (2019).
Google Scholar
Arning, K., Linzenich, A., Engelmann, L. & Ziefle, M. More green or less black? How benefit perceptions of CO2 reductions vs. fossil resource savings shape the acceptance of CO2-based fuels and their conversion technology. Energy Clim. Change 2, 100025 (2021).
Google Scholar
Markusson, N., McLaren, D. & Tyfield, D. Towards a cultural political economy of mitigation deterrence by negative emissions technologies (NETs). Glob. Sustain. 1, e10 (2018).
Google Scholar
Satterfield, T., Nawaz, S. & St-Laurent, G. P. Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’. Clim. Change 176, 14 (2023).
Google Scholar
Net Zero Tracker. Net Zero Tracker. https://zerotracker.net/ (2024).
UK Department for Transport. Jet Zero Strategy – Delivering Net Zero Aviation by 2050. https://assets.publishing.service.gov.uk/media/62e931d48fa8f5033896888a/jet-zero-strategy.pdf (2022).
Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31, 1257–1274 (2002).
Google Scholar
Kemp, R., Schot, J. & Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strateg. Manag. 10, 175–198 (1998).
Google Scholar
Kemp, R. & Volpi, M. The diffusion of clean technologies: a review with suggestions for future diffusion analysis. J. Clean. Prod. 16, S14–S21 (2008).
Google Scholar
Roberts, C. et al. The politics of accelerating low-carbon transitions: Towards a new research agenda. Energy Res. Soc. Sci. 44, 304–311 (2018).
Google Scholar
Rogers, E. M. Diffusion of Innovations. J. Pharm. Sci. 52, 612 (1963).
Google Scholar
Brazzola, N., Moretti, C., Sievert, K., Patt, A. & Lilliestam, J. Utilizing CO2 as a strategy to scale up Direct Air Capture may face fewer short-term barriers than directly storing CO2. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ad3b1f (2024)
Kayak. Search Flights, Hotels & Rental Cars | KAYAK. https://www.kayak.com/ (2023).
Teoh, R., Schumann, U., Majumdar, A. & Stettler, M. E. J. Mitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoption. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b05608 (2020).
Google Scholar
Teoh, R. et al. Targeted use of sustainable aviation fuel to maximize climate benefits. Environ. Sci. Technol. 56, 17246–17255 (2022).
Google Scholar
Transport & Environment. The easy fix to air pollution linked to planes. Transport & Environment https://www.transportenvironment.org/articles/the-easy-fix-to-air-pollution-linked-to-planes (2024).
Brons, M., Pels, E., Nijkamp, P. & Rietveld, P. Price elasticities of demand for passenger air travel: a meta-analysis. J. Air Transp. Manag. 8, 165–175 (2002).
Google Scholar
Molloy, J., Melo, P. C., Graham, D. J., Majumdar, A. & Ochieng, W. Y. Role of air travel demand elasticities in reducing aviation’s carbon dioxide emissions: evidence for european airlines. Transp. Res. Rec. 2300, 31–41 (2012).
Google Scholar
International Civil Aviation Organisation. Long term global aspirational goal (LTAG) for international aviation. https://www.icao.int/environmental-protection/Pages/LTAG.aspx (2022).
European Commission. ReFuelEU Aviation – European Commission. https://transport.ec.europa.eu/transport-modes/air/environment/refueleu-aviation_en (2024).
IRENA. Renewable Power Generation Costs in 2022. https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022 (2023).
Kost, C. et al. Levelized Cost of Electricity – Renewable Energy Technologies. https://www.ise.fraunhofer.de/en/publications/studies/cost-of-electricity.html (2021).
Grahn, M. et al. Review of electrofuel feasibility—cost and environmental impact. Prog. Energy 4, 032010 (2022).
Google Scholar
Oil Change International. Dirty Energy Dominance: Dependent on Denial. https://priceofoil.org/content/uploads/2017/10/OCI_US-Fossil-Fuel-Subs-2015−16_Final_Oct2017.pdf (2017).
Luman, R. & Gerben, H. Synthetic fuel could be the answer to aviation’s net-zero goal. ING Think https://think.ing.com/articles/synthetic-fuels-answer-to-aviations-net-zero-goal/ (2023).
Lufthansa. Lufthansa Group introduces Environmental Cost Surcharge. Lufthansa Group introduces Environmental Cost Surcharge https://newsroom.lufthansagroup.com/en/lufthansa-group-introduces-environmental-cost-surcharge/ (2024).
Schoots, K., Ferioli, F., Kramer, G. J. & van der Zwaan, B. C. C. Learning curves for hydrogen production technology: An assessment of observed cost reductions. Int. J. Hydrog. Energy 33, 2630–2645 (2008).
Google Scholar
Sievert, K., Schmidt, T. S. & Steffen, B. Considering technology characteristics to project future costs of direct air capture. Joule 8, 979–999 (2024).
Google Scholar
Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change 1–10 https://doi.org/10.1038/s41558-023-01604-9. (2023)
Edwards, M. R. et al. Modeling direct air carbon capture and storage in a 1.5 °C climate future using historical analogs. Proc. Natl Acad. Sci. USA 121, e2215679121 (2024).
Google Scholar
Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022).
Google Scholar
IEA. Renewable Electricity – Analysis. https://www.iea.org/reports/renewable-electricity (2022).
Angliviel de La Beaumelle, N. et al. The Global Technical, Economic, and Feasible Potential of Renewable Electricity. Annu. Rev. Environ. Resour. 48, 419–449 (2023).
Google Scholar
Riebl, S., Braun-Unkhoff, M. & Riedel, U. A study on the emissions of alternative aviation fuels. J. Eng. Gas Turbines Power 139, (2017).
Chen, C.-C. & Gettelman, A. Simulated 2050 aviation radiative forcing from contrails and aerosols. Atmos. Chem. Phys. 16, 7317–7333 (2016).
Google Scholar
IATA. Passenger demand recovery continued in 2021 but omicron having impact. https://www.iata.org/en/pressroom/2022-releases/2022-01-25-02/ (2021).
IEA. World Energy Outlook 2021. 386 https://www.iea.org/reports/world-energy-outlook-2021 (2021).
U.S. Energy Information Administration. International Energy Outlook – U.S. Energy Information Administration (EIA). https://www.eia.gov/outlooks/ieo/tables_side_xls.php (2021).
Bain & Company. Air Travel Forecast to 2030: The Recovery and the Carbon Challenge. Bain https://www.bain.com/insights/air-travel-forecast-interactive/ (2023).
Filippone, A. Advanced Aircraft Flight Performance. (Cambridge University Press, 2012).
Anuar, A., Undavalli, V. K., Khandelwal, B. & Blakey, S. Effect of fuels, aromatics and preparation methods on seal swell. Aeronaut. J. 125, 1542–1565 (2021).
Google Scholar
Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).
Google Scholar
Zickfeld, K. et al. Net-zero approaches must consider Earth system impacts to achieve climate goals. Nat. Clim. Change 13, 1298–1305 (2023).
Google Scholar
Moretti, C., Moro, A., Edwards, R., Rocco, M. V. & Colombo, E. Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products. Appl. Energy 206, 372–381 (2017).
Google Scholar
Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M. & Uratani, J. M. Decarbonizing the oil refining industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Res. Soc. Sci. 89, 102542 (2022).
Google Scholar
Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).
Google Scholar
Delpierre, M., Quist, J., Mertens, J., Prieur-Vernat, A. & Cucurachi, S. Assessing the environmental impacts of wind-based hydrogen production in the Netherlands using ex-ante LCA and scenarios analysis. J. Clean. Prod. 299, 126866 (2021).
Google Scholar
Adnan, M. A. & Kibria, M. G. Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways. Appl. Energy 278, 115614 (2020).
Google Scholar
McQueen, N. et al. Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States. Environ. Sci. Technol. 54, 7542–7551 (2020).
Google Scholar
Ringbeck, J., Gautam, A. & Pietsch, T. Endangered Growth: How the Price of Oil Challenges International Travel & Tourism Growth. in The Travel & Tourismus Competitiveness Report 2009 525 (World Economic Forum, 2009).
Damodaran, A. Operating and Net Margins – Stern School of Business, New York University. https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/margin.html (2024).
IRENA. Making the Breakthrough: Green Hydrogen Policies and Technology Costs. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_Hydrogen_breakthrough_2021.pdf?la=en&hash=40FA5B8AD7AB1666EECBDE30EF458C45EE5A0AA6 (2021).
Matute, G., Yusta, J. M. & Correas, L. C. Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: A case study in Spain applied to mobility with FCEVs. Int. J. Hydrog. Energy 44, 17431–17442 (2019).
Google Scholar
Reksten, A. H., Thomassen, M. S., Møller-Holst, S. & Sundseth, K. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development. Int. J. Hydrog. Energy 47, 38106–38113 (2022).
Google Scholar
Terlouw, T., Bauer, C., McKenna, R. & Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. https://doi.org/10.1039/D2EE01023B (2022)
Elsernagawy, O. Y. H. et al. Thermo-economic analysis of reverse water-gas shift process with different temperatures for green methanol production as a hydrogen carrier. J. CO2 Util. 41, 101280 (2020).
Google Scholar
IATA. Jet Fuel Price Monitor. https://www.iata.org/en/publications/economics/fuel-monitor/ (2024).
Emmerling, J. et al. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 14, 104008 (2019).
Google Scholar
Moretti, C. Reflecting on the environmental impact of the captured carbon feedstock. Sci. Total Environ. 854, 158694 (2023).
Google Scholar
Allgoewer, L. et al. Cost-effective locations for producing fuels and chemicals from carbon dioxide and low-carbon hydrogen in the future. Ind. Eng. Chem. Res. 63, 13660–13676 (2024).
Google Scholar