Close Menu
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

US Senators reduce resolutions to block Trump’s global tariff amid economic turmoil

It’s great to see Indian artists perform at Coachella and win a Grammy Award, says AR Rahman

Rare earth metals will be in the center stage at ICSTAR-2025

Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
Facebook X (Twitter) Instagram Pinterest Vimeo
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World
Karachi Chronicle
You are at:Home » The evolution of lithium-ion battery recycling
Tech

The evolution of lithium-ion battery recycling

Adnan MaharBy Adnan MaharJanuary 15, 2025No Comments32 Mins Read0 Views
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


Global EV Outlook 2024 https://iea.blob.core.windows.net/assets/a9e3544b-0b12-4e15-b407-65f5c8ce1b5f/GlobalEVOutlook2024.pdf (International Energy Agency, 2024).

Battery Report 2023 https://volta.foundation/battery-report (Volta Foundation, 2023).

Yu, L., Bai, Y., Polzin, B. & Belharouak, I. Unlocking the value of recycling scrap from Li-ion battery manufacturing: challenges and outlook. J. Power Sources 593, 233955 (2024).

Article 
CAS 

Google Scholar 

Ma, X., Azhari, L. & Wang, Y. Li-ion battery recycling challenges. Chem 7, 2843–2847 (2021).

Article 
CAS 

Google Scholar 

Yang, S.-Y. et al. Influence of pretreatment process on structure, morphology and electrochemical properties of Li(Ni1/3Co1/3Mn1/3)O2 cathode material. Trans. Nonferrous Met. Soc. China 21, 1995–2001 (2011).

Article 
CAS 

Google Scholar 

Kim, S. et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean Prod. 294, 126329 (2021).

Article 
CAS 

Google Scholar 

Mao, J. et al. Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy Environ. Sci. 15, 2732–2752 (2022).

Article 
CAS 

Google Scholar 

Zhu, A. et al. The application of deep eutectic solvents in lithium-ion battery recycling: a comprehensive review. Resour. Conserv. Recycl. 188, 106690 (2023).

Article 
CAS 

Google Scholar 

Zhang, J. & Azimi, G. Recycling of lithium, cobalt, nickel, and manganese from end-of-life lithium-ion battery of an electric vehicle using supercritical carbon dioxide. Resour. Conserv. Recycl. 187, 106628 (2022).

Article 
CAS 

Google Scholar 

Jegan Roy, J., Srinivasan, M. & Cao, B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustain. Chem. Eng. 9, 3060–3069 (2021).

Article 
CAS 

Google Scholar 

Harper, G. D. J. et al. Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. J. Phys. Energy 5, 021501 (2023).

Article 

Google Scholar 

Han, Y., Bedrossian, S., Fraser, R., Bellino, M. & Bibienne, T. Lithium-ion batteries recycling trends and pathways: a comparison. in Proc. 62nd Conference of Metallurgists 197–203 (Springer Nature, 2023).

Sommerville, R., Shaw-Stewart, J., Goodship, V., Rowson, N. & Kendrick, E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustain. Mater. Technol. 25, e00197 (2020).

CAS 

Google Scholar 

Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K. & Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review. J. Power Sources 491, 229622 (2021).

Article 
CAS 

Google Scholar 

Thompson, D. et al. To shred or not to shred: a comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains. Resour. Conserv. Recyc. 175, 105741 (2021).

Article 
CAS 

Google Scholar 

Christensen, P. A. et al. Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renew. Sustain. Energy Rev. 148, 111240 (2021).

Article 

Google Scholar 

Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

Article 
CAS 

Google Scholar 

Rastegarpanah, A. et al. Towards robotizing the processes of testing lithium-ion batteries. Proc. Inst. Mech. Eng. Part. I 235, 1309–1325 (2021).

Google Scholar 

Behnamgol, V., Asadi, M., Mohamed, M. A. A., Aphale, S. S. & Faraji Niri, M. Comprehensive review of lithium-ion battery state of charge estimation by sliding mode observers. Energies 17, 5754 (2024).

Article 
CAS 

Google Scholar 

Shi, M. et al. Current situation and development prospects of discharge pretreatment during recycling of lithium-ion batteries: a review. Batter. Supercaps 7, e202300477 (2024).

Article 
CAS 

Google Scholar 

Harper, G. D. J. Upcycle for enhanced performance. Nat. Sustain. 6, 725–726 (2021).

Article 

Google Scholar 

Lei, C. et al. Lithium ion battery recycling using high-intensity ultrasonication. Green Chem. 23, 4710–4715 (2021).

Article 
CAS 

Google Scholar 

Wegener, K., Chen, W. H., Dietrich, F., Dröder, K. & Kara, S. Robot assisted disassembly for the recycling of electric vehicle batteries. Proc. CIRP 29, 716–721 (2015).

Article 

Google Scholar 

Glöser-Chahoud, S. et al. Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems. Resour. Conserv. Recycl. 174, 105735 (2021).

Article 

Google Scholar 

Mulcahy, K. R., Kilpatrick, A. F. R., Harper, G. D. J., Walton, A. & Abbott, A. P. Debondable adhesives and their use in recycling. Green Chem. 24, 36–61 (2022).

Article 
CAS 

Google Scholar 

Thompson, D. L. et al. The importance of design in lithium ion battery recycling — a critical review. Green Chem. 22, 7585–7603 (2020).

Article 
CAS 

Google Scholar 

Assefi, M., Maroufi, S., Yamauchi, Y. & Sahajwalla, V. Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: a minireview. Curr. Opin. Green Sustain. Chem. 24, 26–31 (2020).

Article 

Google Scholar 

Liu, F. et al. Synergistic recovery of valuable metals from spent nickel–metal hydride batteries and lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 16103–16111 (2019).

Article 
CAS 

Google Scholar 

Wang, J. et al. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. https://doi.org/10.1021/acs.chemrev.3c00884 (2024).

Windisch-Kern, S., Holzer, A., Ponak, C. & Raupenstrauch, H. Pyrometallurgical lithium-ion-battery recycling: approach to limiting lithium slagging with the indured reactor concept. Processes 9, 1–15 (2021).

Article 

Google Scholar 

Brückner, L., Frank, J. & Elwert, T. Industrial recycling of lithium-ion batteries — a critical review of metallurgical process routes. Metals 10, 1107 (2020).

Article 

Google Scholar 

Pan, C. & Shen, Y. Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes. J. Energy Chem. 85, 547–561 (2023).

Article 
CAS 

Google Scholar 

Ji, H., Wang, J., Ma, J., Cheng, H.-M. & Zhou, G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. https://doi.org/10.1039/D3CS00254C (2023).

Huang, B., Pan, Z., Su, X. & An, L. Recycling of lithium-ion batteries: recent advances and perspectives. J. Power Sources 399, 274–286 (2018).

Article 
CAS 

Google Scholar 

Ren, G.-X. et al. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3 slag system. Trans. Nonferrous Met. Soc. China 27, 450–456 (2017).

Article 
CAS 

Google Scholar 

Joulié, M., Billy, E., Laucournet, R. & Meyer, D. Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes. Hydrometallurgy 169, 426–432 (2017).

Article 

Google Scholar 

Ghassa, S., Farzanegan, A., Gharabaghi, M. & Abdollahi, H. Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste. Resour. Conserv. Recycl. 166, 105348 (2021).

Article 
CAS 

Google Scholar 

Windisch-Kern, S., Holzer, A., Ponak, C., Hochsteiner, T. & Raupenstrauch, H. Thermal analysis of lithium ion battery cathode materials for the development of a novel pyrometallurgical recycling approach. Carbon Resour. Convers. 4, 184–189 (2021).

Article 
CAS 

Google Scholar 

Nieto-Arango, E. et al. Pyrometallurgical reduction of manganese-rich black mass from discarded batteries using charcoal. Clean Technol. Environ. Policy 26, 307–317 (2024).

Article 
CAS 

Google Scholar 

Liu, P. et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials. J. Therm. Anal. Calorim. 136, 1323–1332 (2019).

Article 
CAS 

Google Scholar 

Zhang, G. et al. Recycling of valuable metals from spent cathode material by organic pyrolysis combined with in-situ thermal reduction. J. Hazard. Mater. 430, 128374 (2022).

Article 
CAS 

Google Scholar 

Fan, E. et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 16144–16150 (2019).

Article 
CAS 

Google Scholar 

Lin, J. et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chem. 21, 5904–5913 (2019).

Article 
CAS 

Google Scholar 

Shi, J. et al. Sulfation roasting mechanism for spent lithium-ion battery metal oxides under SO2–O2–Ar atmosphere. JOM 71, 4473–4482 (2019).

Article 
CAS 

Google Scholar 

Peng, C., Liu, F., Wang, Z., Wilson, B. P. & Lundström, M. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J. Power Sources 415, 179–188 (2019).

Article 
CAS 

Google Scholar 

Zhou, M., Li, B., Li, J. & Xu, Z. Pyrometallurgical technology in the recycling of a spent lithium ion battery: evolution and the challenge. ACS EST. Eng. 1, 1369–1382 (2021).

Article 
CAS 

Google Scholar 

Lin, J. et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Appl. Mater. Interfaces 12, 18482–18489 (2020).

Article 
CAS 

Google Scholar 

Zhang, X. et al. Recovery valuable metals from spent lithium-ion batteries via a low-temperature roasting approach: thermodynamics and conversion mechanism. J. Hazard. Mater. Adv. 1, 100003 (2021).

CAS 

Google Scholar 

Di, C. et al. in Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies (eds Chen, X. et al.) 387–395 (Springer International, 2020).

Zhu, X.-H. et al. Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method. Angew. Chem. Int. Ed. 62, e202300074 (2023).

Article 
CAS 

Google Scholar 

Liu, C., Lin, J., Cao, H., Zhang, Y. & Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review. J. Clean Prod. 228, 801–813 (2019).

Article 
CAS 

Google Scholar 

Gaines, L. Lithium-ion battery recycling processes: research towards a sustainable course. Sustain. Mater. Technol. 17, e00068 (2018).

CAS 

Google Scholar 

Pinna, E. G., Ruiz, M. C., Ojeda, M. W. & Rodriguez, M. H. Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 167, 66–71 (2017).

Article 
CAS 

Google Scholar 

Chen, X. et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manag. 38, 349–356 (2015).

Article 
CAS 

Google Scholar 

Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M. & Inoue, K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47, 259–271 (1998).

Article 
CAS 

Google Scholar 

Yu, L., Bai, Y., Essehli, R., Bisht, A. & Belharouak, I. Efficient separation and coprecipitation for simplified cathode recycling. Energy Storage Mater. 63, 103025 (2023).

Article 

Google Scholar 

Chen, X., Li, J., Kang, D., Zhou, T. & Ma, H. A novel closed-loop process for the simultaneous recovery of valuable metals and iron from a mixed type of spent lithium-ion batteries. Green Chem. 21, 6342–6352 (2019).

Article 
CAS 

Google Scholar 

Shin, E. J. et al. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries. J. Mater. Chem. A 3, 11493–11502 (2015).

Article 
CAS 

Google Scholar 

Barik, S. P., Prabaharan, G. & Kumar, L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study. J. Clean Prod. 147, 37–43 (2017).

Article 
CAS 

Google Scholar 

Guimarães, L. F., Botelho Junior, A. B. & Espinosa, D. C. R. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Miner. Eng. 183, 107597 (2022).

Article 

Google Scholar 

Wang, K., Zhang, G., Luo, M. & Zeng, M. Separation of Co and Mn from acetic acid leaching solution of spent lithium-ion battery by Cyanex272. J. Environ. Chem. Eng. 10, 108250 (2022).

Article 
CAS 

Google Scholar 

Li, Y. et al. Improving extraction performance of D2EHPA for impurities removal from spent lithium-ion batteries leaching solution by TPC(4). ACS Sustain. Chem. Eng. 10, 4312–4322 (2022).

Article 
CAS 

Google Scholar 

Chen, W.-S. & Ho, H.-J. Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods. Metals https://doi.org/10.3390/met8050321 (2018).

Akhmetov, N., Manakhov, A. & Al-Qasim, A. S. Li-ion battery cathode recycling: an emerging response to growing metal demand and accumulating battery waste. Electronics 12, 1152 (2023).

Article 
CAS 

Google Scholar 

Keller, A., Hlawitschka, M. W. & Bart, H. J. Manganese recycling of spent lithium-ion batteries via solvent extraction. Sep. Purif. Technol. 275, 119166 (2021).

Article 
CAS 

Google Scholar 

Joulié, M., Laucournet, R. & Billy, E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 247, 551–555 (2014).

Article 

Google Scholar 

Gu, S., Zhang, L., Fu, B., Wang, X. & Ahn, J. W. Feasible route for the recovery of strategic metals from mixed lithium-ion batteries cathode materials by precipitation and carbonation. Chem. Eng. J. 420, 127561 (2021).

Article 
CAS 

Google Scholar 

Cai, G., Fung, K. Y., Ng, K. M. & Wibowo, C. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind. Eng. Chem. Res. 53, 18245–18259 (2014).

Article 
CAS 

Google Scholar 

Swain, B. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017).

Article 
CAS 

Google Scholar 

Lupi, C., Pasquali, M. & Dell’Era, A. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manag. 25, 215–220 (2005).

Article 
CAS 

Google Scholar 

Li, S. et al. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries. Waste Manag. 136, 18–27 (2021).

Article 
CAS 

Google Scholar 

Li, L., Chen, R., Sun, F., Wu, F. & Liu, J. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108, 220–225 (2011).

Article 
CAS 

Google Scholar 

Tao, Y., Wang, Z., Wu, B., Tang, Y. & Evans, S. Environmental life cycle assessment of recycling technologies for ternary lithium-ion batteries. J. Clean Prod. 389, 136008 (2023).

Article 

Google Scholar 

Zhao, H., Zuo, H., Wang, J. & Jiao, S. Practical application of graphite in lithium-ion batteries: modification, composite, and sustainable recycling. J. Energy Storage 98, 113125 (2024).

Article 

Google Scholar 

Li, Y. et al. Recycling of spent lithium-ion batteries in view of green chemistry. Green Chem. 23, 6139–6171 (2021).

Article 
CAS 

Google Scholar 

Iturrondobeitia, M. et al. Environmental impact assessment of LiNi1/3Mn1/3Co1/3O2 hydrometallurgical cathode recycling from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 10, 9798–9810 (2022).

Article 
CAS 

Google Scholar 

Wang, J. & Guo, Z. in Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts (ed. An, L.) 27–55 (Springer International, 2019).

Asadi Dalini, E., Karimi, G., Zandevakili, S. & Goodarzi, M. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Miner. Process. Extractive Metall. Rev. 42, 451–472 (2021).

Article 
CAS 

Google Scholar 

Noudeng, V., Quan, N. V. & Xuan, T. D. A future perspective on waste management of lithium-ion batteries for electric vehicles in Lao PDR: current status and challenges. Int. J. Environ. Res. Public. Health 19, 16169 (2022).

Article 
CAS 

Google Scholar 

Hou, J. et al. A green closed-loop process for selective recycling of lithium from spent lithium-ion batteries. Green Chem. 24, 7049–7060 (2022).

Article 
CAS 

Google Scholar 

Punt, T., Bradshaw, S. M., van Wyk, P. & Akdogan, G. The efficiency of black mass preparation by discharge and alkaline leaching for LIB recycling. Minerals 12, 753 (2022).

Article 
CAS 

Google Scholar 

Wang, C. et al. Recycling of spent lithium-ion batteries: selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag. 114, 253–262 (2020).

Article 
CAS 

Google Scholar 

Chen, L. et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108, 80–86 (2011).

Article 
CAS 

Google Scholar 

Ferreira, D. A., Prados, L. M. Z., Majuste, D. & Mansur, M. B. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J. Power Sources 187, 238–246 (2009).

Article 
CAS 

Google Scholar 

Hu, C., Guo, J., Wen, J. & Peng, Y. Preparation and electrochemical performance of nano-Co3O4 anode materials from spent Li-ion batteries for lithium-ion batteries. J. Mater. Sci. Technol. 29, 215–220 (2013).

Article 
CAS 

Google Scholar 

Chen, M. et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019).

Article 
CAS 

Google Scholar 

He, B. et al. A comprehensive review of lithium-ion battery (LiB) recycling technologies and industrial market trend insights. Recycling 9, 9 (2024).

Article 

Google Scholar 

Davis, K. & Demopoulos, G. P. Hydrometallurgical recycling technologies for NMC Li-ion battery cathodes: current industrial practice and new R&D trends. RSC Sustain. 1, 1932–1951 (2023).

Article 
CAS 

Google Scholar 

Ornes, S. How to recycle an EV battery. Proc. Natl Acad. Sci. USA 121, e2400520121 (2024).

Article 
CAS 

Google Scholar 

Liu, Y., Deng, H., Gratz, E. & Wang, Y. Hydro-to-cathodeTM customizable cathode materials made from recycled elements. ECS Meet. Abstr. MA2022-02, 342 (2022).

Article 

Google Scholar 

Yao, Y. et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustain. Chem. Eng. 6, 13611–13627 (2018).

Article 
CAS 

Google Scholar 

Wei, G. et al. Direct recycling of spent Li-ion batteries: challenges and opportunities toward practical applications. iScience 26, 107676 (2023).

Article 
CAS 

Google Scholar 

Li, J. et al. Water-based electrode manufacturing and direct recycling of lithium-ion battery electrodes — a green and sustainable manufacturing system. iScience 23, 101081 (2020).

Article 
CAS 

Google Scholar 

Li, X., Zhang, J., Song, D., Song, J. & Zhang, L. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power Sources 345, 78–84 (2017).

Article 
CAS 

Google Scholar 

Xu, P. et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4, 2609–2626 (2020).

Article 
CAS 

Google Scholar 

Chen, Q., Huang, L., Liu, J., Luo, Y. & Chen, Y. A new approach to regenerate high-performance graphite from spent lithium-ion batteries. Carbon 189, 293–304 (2022).

Article 
CAS 

Google Scholar 

Wang, H. et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochim. Acta 313, 423–431 (2019).

Article 
CAS 

Google Scholar 

Natarajan, S., Subramanyan, K., Dhanalakshmi, R. B., Stephan, A. M. & Aravindan, V. Regeneration of polyolefin separators from spent li-ion battery for second life. Batteries Supercaps 3, 581–586 (2020).

Article 
CAS 

Google Scholar 

Zhu, P. et al. Direct reuse of aluminium and copper current collectors from spent lithium-ion batteries. Green Chem. 25, 3503–3514 (2023).

Article 
CAS 

Google Scholar 

Fu, Y., Schuster, J., Petranikova, M. & Ebin, B. Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction. Resour. Conserv. Recycl. 172, 105666 (2021).

Article 
CAS 

Google Scholar 

Zhang, R., Shi, X., Esan, O. C. & An, L. Organic electrolytes recycling from spent lithium-ion batteries. Glob. Chall. 6, 2200050 (2022).

Article 

Google Scholar 

Liu, G. et al. Controllable long-term lithium replenishment for enhancing energy density and cycle life of lithium-ion batteries. Energy Environ. Sci. 17, 1163–1174 (2024).

Article 
CAS 

Google Scholar 

Shi, Y., Chen, G. & Chen, Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles. Green Chem. 20, 851–862 (2018).

Article 
CAS 

Google Scholar 

Ma, J. et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J. Am. Chem. Soc. 144, 20306–20314 (2022).

Article 
CAS 

Google Scholar 

Jiang, G. et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustain. Chem. Eng. 8, 18138–18147 (2020).

Article 
CAS 

Google Scholar 

Zhang, L., Xu, Z. & He, Z. Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes. ACS Sustain. Chem. Eng. 8, 11596–11605 (2020).

Article 
CAS 

Google Scholar 

Shi, Y., Chen, G., Liu, F., Yue, X. & Chen, Z. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett. 3, 1683–1692 (2018).

Article 
CAS 

Google Scholar 

Wang, T. et al. Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 10, 2001204 (2020).

Article 
CAS 

Google Scholar 

Tang, L. et al. Monitoring the morphology evolution of LiNi0.8Mn0.1Co0.1O2 during high-temperature solid state synthesis via in situ SEM. J. Energy Chem. 66, 9–15 (2022).

Article 
CAS 

Google Scholar 

Zhou, H., Zhao, X., Yin, C. & Li, J. Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Electrochim. Acta 291, 142 (2018).

Article 
CAS 

Google Scholar 

Ji, G. et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584 (2023).

Article 
CAS 

Google Scholar 

Xu, P. et al. A materials perspective on direct recycling of lithium-ion batteries: principles, challenges and opportunities. Adv. Funct. Mater. 33, 2213168 (2023).

Article 
CAS 

Google Scholar 

Ma, X. et al. Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials. Chem 8, 1944–1955 (2022).

Article 
CAS 

Google Scholar 

Deng, B., Zhou, Z., Wang, W. & Wang, D. Direct recovery and efficient reutilization of degraded ternary cathode materials from spent lithium-ion batteries via a homogeneous thermochemical process. ACS Sustain. Chem. Eng. 8, 14022–14029 (2020).

Article 
CAS 

Google Scholar 

Xing, X. et al. A facile eutectic mixed molten salt method for synthesizing LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries. Colloids Surf. A https://doi.org/10.1016/j.colsurfa.2024.133376 (2024).

Shi, Y., Zhang, M., Meng, Y. S. & Chen, Z. Ambient-pressure relithiation of degraded LiNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9, 1900454 (2019).

Article 

Google Scholar 

Yang, J., Wang, W., Yang, H. & Wang, D. One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode. Green Chem. 22, 6489–6496 (2020).

Article 
CAS 

Google Scholar 

Yang, H., Deng, B., Jing, X., Li, W. & Wang, D. Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: efficient impurity removal toward practical applications. Waste Manag. 129, 85–94 (2021).

Article 
CAS 

Google Scholar 

Yang, T. et al. An effective relithiation process for recycling lithium-ion battery cathode materials. Adv. Sustain. Syst. 4, 1900088 (2020).

Article 
CAS 

Google Scholar 

Zhou, S. et al. Direct recovery of scrapped LiFePO4 by a green and low-cost electrochemical re-lithiation method. Green Chem. 24, 6278–6286 (2022).

Article 
CAS 

Google Scholar 

Yu, X. et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater. 51, 54–62 (2022).

Article 

Google Scholar 

Zhan, L., Jiang, L., Zhang, Y., Gao, B. & Xu, Z. Reduction, detoxification and recycling of solid waste by hydrothermal technology: a review. Chem. Eng. J. 390, 124651 (2020).

Article 
CAS 

Google Scholar 

Chan, K. H., Malik, M. & Azimi, G. Direct recycling of degraded lithium-ion batteries of an electric vehicle using hydrothermal relithiation. Mater. Today Energy 37, 101374 (2023).

Article 
CAS 

Google Scholar 

Cao, Y. et al. A review of direct recycling methods for spent lithium-ion batteries. Energy Storage Mater. 70, 103475 (2024).

Article 

Google Scholar 

Herzog, M. J., Esken, D. & Janek, J. Improved cycling performance of high-nickel NMC by dry powder coating with nanostructured fumed Al2O3, TiO2, and ZrO2: a comparison. Batteries Supercaps 4, 1003–1017 (2021).

Article 
CAS 

Google Scholar 

Cheng, J., Fong, K. D. & Persson, K. A. Materials design principles of amorphous cathode coatings for lithium-ion battery applications. J. Mater. Chem. A 10, 22245–22256 (2022).

Article 
CAS 

Google Scholar 

Zou, L. et al. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat. Commun. 10, 3447 (2019).

Article 

Google Scholar 

Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).

Article 
CAS 

Google Scholar 

Li, J. et al. Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries. J. Mater. science. Mater. Electron. 29, 17661–17669 (2018).

Article 
CAS 

Google Scholar 

Meng, X. et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019).

Article 
CAS 

Google Scholar 

Shin, Y. et al. A comprehensive review on the recovery of cathode active materials via direct recycling from spent Li-ion batteries. Renew. Sustain. Energy Rev. 187, 113693 (2023).

Article 
CAS 

Google Scholar 

Folayan, T.-O., Zhan, R., Huang, K. & Pan, L. Improved separation between recycled anode and cathode materials from Li-ion batteries using coarse flake particle flotation. ACS Sustain. Chem. Eng. 11, 2917–2926 (2023).

Article 
CAS 

Google Scholar 

Al-Shammari, H. & Farhad, S. Heavy liquids for rapid separation of cathode and anode active materials from recycled lithium-ion batteries. Resour. Conserv. Recycl. 174, 105749 (2021).

Article 
CAS 

Google Scholar 

Folayan, T.-O. et al. Direct recycling of blended cathode materials by froth flotation. Energy Technol. https://doi.org/10.1002/ente.202100468 (2021).

Ahmed, S., Nelson, P. A., Gallagher, K. G., Susarla, N. & Dees, D. W. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. J. Power Sources 342, 733–740 (2017).

Article 
CAS 

Google Scholar 

Gaines, L., Dai, Q., Vaughey, J. T. & Gillard, S. Direct recycling R&D at the ReCell Center. Recycling https://doi.org/10.3390/recycling6020031 (2021).

Ma, X., Chen, M., Chen, B., Meng, Z. & Wang, Y. High-performance graphite recovered from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 19732–19738 (2019).

Article 
CAS 

Google Scholar 

Qian, G. et al. Value-creating upcycling of retired electric vehicle battery cathodes. Cell Rep. Phys. Sci. 3, 100741 (2022).

Article 
CAS 

Google Scholar 

Xing, C., Yao, M. & Fei, L. Upcycling degraded layered oxide cathodes from spent lithium-ion batteries toward emerging materials: a review. Energy Storage Mater. 71, 103636 (2024).

Article 

Google Scholar 

Wang, T. et al. Flux upcycling of spent NMC 111 to nickel-rich NMC cathodes in reciprocal ternary molten salts. iScience 25, 103801 (2022).

Article 
CAS 

Google Scholar 

Zhou, J. et al. Direct upcycling of leached FePO4 from spent lithium-ion batteries toward gradient-doped LiMnxFe1−xPO4 cathode material. Adv. Energy Mater. 14, 2302761 (2024).

Article 
CAS 

Google Scholar 

Xiao, X. et al. Cathode regeneration and upcycling of spent LIBs: toward sustainability. Energy Environ. Sci. 16, 2856–2868 (2023).

Article 
CAS 

Google Scholar 

Ma, X. et al. Recycled cathode materials enabled superior performance for lithium-ion batteries. Joule 5, 2955–2970 (2021).

Article 
CAS 

Google Scholar 

Zou, H., Gratz, E., Apelian, D. & Wang, Y. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem. 15, 1183–1191, (2013).

Article 
CAS 

Google Scholar 

Gratz, E., Sa, Q., Apelian, D. & Wang, Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255–262 (2014).

Article 
CAS 

Google Scholar 

Zheng, Z. et al. High performance cathode recovery from different electric vehicle recycling streams. ACS Sustain. Chem. Eng. 6, 13977–13982 (2018).

Article 
CAS 

Google Scholar 

Sa, Q. et al. Synthesis of diverse LiNixMnyCozO2 cathode materials from lithium ion battery recovery stream. J. Sustain. Metall. 2, 248–256 (2016).

Article 

Google Scholar 

Chen, M. et al. Closed loop recycling of electric vehicle batteries to enable ultra-high quality cathode powder. Sci. Rep. 9, 1654 (2019).

Article 

Google Scholar 

Liu, P. et al. Resynthesis and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 from spent cathode material of lithium-ion batteries. Vacuum 156, 317–324 (2018).

Article 
CAS 

Google Scholar 

Liu, P., Yang, X., Xiao, L., Chen, H. & Chen, H. Preparation of ternary precursor derived from spent LiNixCoyMn1−x−yO2 materials. JOM 71, 4492–4499 (2019).

Article 
CAS 

Google Scholar 

Ji, G. et al. Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 15, 4086 (2024).

Article 
CAS 

Google Scholar 

Kim, W., Park, S., Ko, G., Lee, J. & Kwon, K. Optimizing pH conditions for impurity removal in closed-loop Li-ion battery recycling. Chem. Eng. J. 475, 146121 (2023).

Article 
CAS 

Google Scholar 

Wang, Y., Gratz, E., Sa, Q., Zheng, Z. & Heelan, J. Method and apparatus for recycling lithium-ion batteries. US patent US10522884B2 (2016).

Roy, J. J. et al. Green recycling methods to treat lithium-ion batteries e-waste: a circular approach to sustainability. Adv. Mater. 34, e2103346 (2022).

Article 

Google Scholar 

Padwal, C. et al. Deep eutectic solvents: green approach for cathode recycling of Li‐ion batteries. Adv. Energy Sustain. Res. 3, 2100133 (2021).

Article 

Google Scholar 

Wang, J. et al. Green recycling of spent Li-ion battery cathodes via deep-eutectic solvents. Energy Environ. Sci. 17, 867–884 (2024).

Article 
CAS 

Google Scholar 

Han, Y. et al. Supercritical carbon dioxide technology in synthesis, modification, and recycling of battery materials. Carbon Neutraliz. 2, 169–185 (2023).

Article 
CAS 

Google Scholar 

Cattaneo, P., D’Aprile, F., Kapelyushko, V., Mustarelli, P. & Quartarone, E. Supercritical CO2 technology for the treatment of end-of-life lithium-ion batteries. RSC Sustain. 2, 1692–1707 (2024).

Article 
CAS 

Google Scholar 

Roy, J. J., Cao, B. & Madhavi, S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 282, 130944–130944 (2021).

Article 
CAS 

Google Scholar 

Biswal, B. K. et al. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 12343–12352 (2018).

Article 
CAS 

Google Scholar 

Mishra, D., Kim, D. J., Ralph, D. E., Ahn, J. G. & Rhee, Y. H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 28, 333–338 (2008).

Article 
CAS 

Google Scholar 

Xin, Y. et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J. Clean Prod. 116, 249–258 (2016).

Article 
CAS 

Google Scholar 

Heydarian, A., Mousavi, S. M., Vakilchap, F. & Baniasadi, M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources 378, 19–30 (2018).

Article 
CAS 

Google Scholar 

Prabaharan, G., Barik, S. P., Kumar, N. & Kumar, L. Electrochemical process for electrode material of spent lithium ion batteries. Waste Manag. 68, 527–533 (2017).

Article 
CAS 

Google Scholar 

Kim, K., Raymond, D., Candeago, R. & Su, X. Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nat. Commun. 12, 6554 (2021).

Article 
CAS 

Google Scholar 

Yan, S., Sun, C., Zhou, T., Gao, R. & Xie, H. Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2020.117930 (2021).

Ning, P. et al. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. Waste Manag. 103, 52–60 (2020).

Article 
CAS 

Google Scholar 

Jiang, F. et al. Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries. Ultrason. Sonochem. 48, 88–95 (2018).

Article 
CAS 

Google Scholar 

Wang, W.-Y., Yen, C. H. & Hsu, J.-K. Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction. Sep. Sci. Technol. 55, 3028–3035 (2020).

Article 
CAS 

Google Scholar 

Liu, C. et al. Microwave low-temperature treatment — step leaching process for recovering black mass from spent lithium-ion batteries. J. Environ. Chem. Eng. 11, 109759 (2023).

Article 
CAS 

Google Scholar 

Zhao, Y., Liu, B., Zhang, L. & Guo, S. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J. Hazard. Mater. 384, 121487–121487 (2020).

Article 
CAS 

Google Scholar 

Pindar, S. & Dhawan, N. Rapid recycling of spent lithium-ion batteries using microwave route. Process. Saf. Environ. Prot. 147, 226–233 (2021).

Article 
CAS 

Google Scholar 

Zhuang, L., Sun, C., Zhou, T., Li, H. & Dai, A. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Manag. 85, 175–185 (2019).

Article 
CAS 

Google Scholar 

Dong, X. et al. Efficient photo-oxidation leaching of Ni and Co in a spent lithium-ion battery cathode by homogeneous UV/H2O2. ACS Sustain. Chem. Eng. 11, 9330–9336 (2023).

Article 
CAS 

Google Scholar 

Men, L., Feng, S., Zhang, J., Luo, X. & Zhou, Y. A systematic review of efficient recycling for the cathode materials of spent lithium-ion batteries: process intensification technologies beyond traditional methods. Green Chem. 26, 1170–1193 (2024).

Article 
CAS 

Google Scholar 

Tong, Z., Ren, X., Ni, M., Bu, X. & Dong, L. Review of ultrasound-assisted recycling and utilization of cathode materials from spent lithium-ion batteries: state-of-the-art and outlook. Energy Fuels 37, 14574–14588 (2023).

Article 
CAS 

Google Scholar 

Stallmeister, C. & Friedrich, B. Holistic investigation of the inert thermal treatment of industrially shredded NMC 622 lithium-ion batteries and its influence on selective lithium recovery by water leaching. Metals https://doi.org/10.3390/met13122000 (2023).

Schwich, L., Schubert, T. & Friedrich, B. Early-stage recovery of lithium from tailored thermal conditioned black mass part I: mobilizing lithium via supercritical CO2-carbonation. Metals 11, 177 (2021).

Article 
CAS 

Google Scholar 

Zhang, G. et al. Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching. Sep. Purif. Technol. 314, 123555 (2023).

Article 
CAS 

Google Scholar 

Zhao, C. et al. Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation. Ultrason. Sonochem. 52, 484–492 (2019).

Article 
CAS 

Google Scholar 

Lv, W. et al. Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes. ACS Sustain. Chem. Eng. 8, 5165–5174 (2020).

Article 
CAS 

Google Scholar 

Rostami, T. & Khoshandam, B. Metals recovery from spent lithium-ion batteries cathode via hydrogen reduction-water leaching-carbothermic or hydrogen reduction process. Min. Metall. Explor. https://doi.org/10.1007/s42461-024-00988-2 (2024).

Park, J. S., Seo, S., Han, K., Lee, S. & Kim, M. J. A process using a thermal reduction for producing the battery grade lithium hydroxide from wasted black powder generated by cathode active materials manufacturing. J. Hazard. Mater. 448, 130952 (2023).

Article 
CAS 

Google Scholar 

Liu, X., Gao, Z., Cheng, J., Gong, J. & Wang, J. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries. Chin. J. Chem. Eng. 41, 73–84 (2022).

Article 

Google Scholar 

Tran, T. & Luong, V. T. in Lithium Process Chemistry (eds Chagnes, A. & Światowska, J.) 81–124 (Elsevier, 2015).

Yang, L. et al. Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: recent advances and future trends. Environ. Int. 152, 106512 (2021).

Article 
CAS 

Google Scholar 

Hu, F. et al. High purity nickel recovery from an industrial sidestream using concentration and liquid–liquid extraction techniques. JOM 72, 831–838 (2020).

Article 
CAS 

Google Scholar 

Kursunoglu, S., Ichlas, Z. T. & Kaya, M. Solvent extraction process for the recovery of nickel and cobalt from Caldag laterite leach solution: the first bench scale study. Hydrometallurgy 169, 135–141 (2017).

Article 
CAS 

Google Scholar 

Jha, A. K. et al. Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant. Sep. Purif. Technol. 104, 160–166 (2013).

Article 
CAS 

Google Scholar 

Nasser, O. A. & Petranikova, M. Review of achieved purities after Li-ion batteries hydrometallurgical treatment and impurities effects on the cathode performance. Batteries 7, 60 (2021).

Article 
CAS 

Google Scholar 

Natarajan, S. & Aravindan, V. An urgent call to spent LIB recycling: whys and wherefores for graphite recovery. Adv. Energy Mater. 10, 2002238 (2020).

Article 
CAS 

Google Scholar 

Liu, J. et al. Critical strategies for recycling process of graphite from spent lithium-ion batteries: a review. Sci. Total. Environ. 816, 151621 (2022).

Article 
CAS 

Google Scholar 

Li, Y.-f, Zhu, S.-f & Wang, L. Purification of natural graphite by microwave assisted acid leaching. Carbon 55, 377–378 (2013).

Article 

Google Scholar 

Chen, W. et al. Flash recycling of graphite anodes. Adv. Mater. 35, 2207303 (2023).

Article 
CAS 

Google Scholar 

Xiao, H. et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithium-ion batteries. J. Alloy. Compd. 888, 161593 (2021).

Article 
CAS 

Google Scholar 

Niu, B., Xu, Z., Xiao, J. & Qin, Y. Recycling hazardous and valuable electrolyte in spent lithium-ion batteries: urgency, progress, challenge, and viable approach. Chem. Rev. 123, 8718–8735 (2023).

Article 
CAS 

Google Scholar 

Grützke, M. et al. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes. J. Supercrit. Fluids 94, 216–222 (2014).

Article 

Google Scholar 

Wang, J. et al. High-value utilization of recovered LiPF6 from retired lithium-ion batteries. Green Chem. 26, 2162–2169 (2024).

Article 
CAS 

Google Scholar 

Wang, W., Chen, W. & Liu, H. Hydrometallurgical preparation of lithium carbonate from lithium-rich electrolyte. Hydrometallurgy 185, 88–92 (2019).

Article 
CAS 

Google Scholar 

He, K., Zhang, Z.-Y., Alai, L. & Zhang, F.-S. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries. J. Hazard. Mater. 375, 43–51 (2019).

Article 
CAS 

Google Scholar 

Arshad, F. et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries. ACS Sustain. Chem. Eng. 8, 13527–13554 (2020).

Article 
CAS 

Google Scholar 

Sarkar, A., May, R., Ramesh, S., Chang, W. & Marbella, L. E. Recovery and reuse of composite cathode binder in lithium ion batteries. ChemistryOpen 10, 545–552 (2021).

Article 
CAS 

Google Scholar 

Sloop, S. et al. A direct recycling case study from a lithium-ion battery recall. Sustain. Mater. Technol. https://doi.org/10.1016/j.susmat.2020.e00152 (2020).

Driscoll, L. L. et al. Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recycling. Joule https://doi.org/10.1016/j.joule.2024.07.001 (2024).

Article 

Google Scholar 

Zanoletti, A., Carena, E., Ferrara, C. & Bontempi, E. A review of lithium-ion battery recycling: technologies, sustainability, and open issues. Batteries 10, 38 (2024).

Article 
CAS 

Google Scholar 

Wagner-Wenz, R. et al. Recycling routes of lithium-ion batteries: a critical review of the development status, the process performance, and life-cycle environmental impacts. MRS Energy Sustain. 10, 1–34 (2023).

Article 

Google Scholar 

Baum, Z. J., Bird, R. E., Yu, X. & Ma, J. Lithium-ion battery recycling ─ overview of techniques and trends. ACS Energy Lett. 7, 712–719 (2022).

Article 
CAS 

Google Scholar 

Zhang, Q. et al. Economical and ecofriendly lithium-ion battery recycling: material flow and energy flow. ACS Sustain. Chem. Eng. 12, 2511–2530 (2024).

Article 
CAS 

Google Scholar 

Banar, M., Öztürk, M., Evin, E. & Özkan, A. Comparison of waste lithium-ion batteries recycling methods by different decision making techniques. Environ. Res. Technol. 6, 226–241 (2023).

Article 

Google Scholar 

Xu, P., Tan, D. H. S., Gao, H., Rose, S. & Chen, Z. in Encyclopedia of Energy Storage (ed. Cabeza, L. F.) 98–107 (Elsevier, 2022).

Matulka, R. The History of the Electric Car https://www.energy.gov/articles/history-electric-car (Department of Energy, 2014).

Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P. & Zaghib, K. Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability 12, 5837 (2020).

Article 
CAS 

Google Scholar 

Global Critical Minerals Outlook 2024 https://iea.blob.core.windows.net/assets/ee01701d-1d5c-4ba8-9df6-abeeac9de99a/GlobalCriticalMineralsOutlook2024.pdf (International Energy Agency, 2024).

Lander, L. et al. Financial viability of electric vehicle lithium-ion battery recycling. iScience 24, 102787 (2021).

Article 

Google Scholar 

Tankou, A., Bieker, G. & Hall, D. Scaling Up Reuse and Recycling of Electric Vehicle Batteries: Assessing Challenges and Policy Approaches. White Paper (International Council on Clean Transportation, 2023).

Erakca, M. et al. Closing gaps in LCA of lithium-ion batteries: LCA of lab-scale cell production with new primary data. J. Clean Prod. 384, 135510 (2023).

Article 

Google Scholar 

Rosenberg, S. et al. Combining dynamic material flow analysis and life cycle assessment to evaluate environmental benefits of recycling — a case study for direct and hydrometallurgical closed-loop recycling of electric vehicle battery systems. Resour. Conserv. Recycl. 198, 107145 (2023).

Article 

Google Scholar 

Bai, Y. et al. Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater. Today 41, 304–315 (2020).

Article 
CAS 

Google Scholar 

Liang, Z. et al. Hydrometallurgical recovery of spent lithium ion batteries: environmental strategies and sustainability evaluation. ACS Sustain. Chem. Eng. 9, 5750–5767 (2021).

Article 
CAS 

Google Scholar 

Neumann, J. et al. Recycling of lithium‐ion batteries — current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. https://doi.org/10.1002/aenm.202102917 (2022).

Zhang, R. et al. Valence effects of Fe impurity for recovered LiNi0.6Co0.2Mn0.2O2 cathode materials. ACS Appl. Energy Mater. 4, 10356–10367 (2021).

Article 
CAS 

Google Scholar 

Zhang, R. et al. Systematic study of Al impurity for NCM622 cathode materials. ACS Sustain. Chem. Eng. 8, 9875–9884 (2020).

Article 
CAS 

Google Scholar 

Zhang, R. et al. Understanding fundamental effects of Cu impurity in different forms for recovered LiNi0.6Co0.2Mn0.2O2 cathode materials. Nano Energy 78, 105214 (2020).

Article 
CAS 

Google Scholar 

Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion batteries. Matter 3, 1845–1861 (2020).

Article 

Google Scholar 

Li, J., Zhang, H., Wang, H. & Zhang, B. Research progress on bioleaching recovery technology of spent lithium-ion batteries. Environ. Res. 238, 117145 (2023).

Article 
CAS 

Google Scholar 

Zhao, J. et al. Cathode electrolysis for the comprehensive recycling of spent lithium-ion batteries. Green Chem. 24, 6179–6188 (2022).

Article 
CAS 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Telegram Email
Previous ArticleArmy chief General Upendra Dwivedi talks about replacing 1971 war paintings: new portraits connect past, present and future
Next Article Spitting, BharatPe says he’s back on track for profitability and IPO
Adnan Mahar
  • Website

Adnan is a passionate doctor from Pakistan with a keen interest in exploring the world of politics, sports, and international affairs. As an avid reader and lifelong learner, he is deeply committed to sharing insights, perspectives, and thought-provoking ideas. His journey combines a love for knowledge with an analytical approach to current events, aiming to inspire meaningful conversations and broaden understanding across a wide range of topics.

Related Posts

This stretchy battery is healed after being cut in half

April 21, 2025

Apple fixes two zero-days exploited in targeted iPhone attacks

April 16, 2025

Li-ion Battery Supplier Neuron Energy Targets 10x Growth in 5 Years

March 17, 2025
Leave A Reply Cancel Reply

Top Posts

President Trump’s SEC nominee Paul Atkins marries multi-billion dollar roof fortune

December 14, 202493 Views

Alice Munro’s Passive Voice | New Yorker

December 23, 202451 Views

2025 Best Actress Oscar Predictions

December 12, 202434 Views

Merry AI: ChatGPT can now be spoken to using the voice of Santa Claus

December 13, 202426 Views
Don't Miss
AI April 14, 2025

Google, Nvidia invests in AI startup Safe Superintelligence, co-founder of Openai Ilya Sutskever

Alphabet and Nvidia are investing in Safe Superintelligence (SSI), a stealth mode AI startup co-founded…

This $30 billion AI startup can be very strange by a man who said that neural networks may already be aware of it

As Deepseek and ChatGpt Surge, is Delhi behind?

Openai’s Sam Altman reveals his daily use of ChatGpt, and that’s not what you think

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

About Us
About Us

Welcome to Karachi Chronicle, your go-to source for the latest and most insightful updates across a range of topics that matter most in today’s fast-paced world. We are dedicated to delivering timely, accurate, and engaging content that covers a variety of subjects including Sports, Politics, World Affairs, Entertainment, and the ever-evolving field of Artificial Intelligence.

Facebook X (Twitter) Pinterest YouTube WhatsApp
Our Picks

US Senators reduce resolutions to block Trump’s global tariff amid economic turmoil

It’s great to see Indian artists perform at Coachella and win a Grammy Award, says AR Rahman

Rare earth metals will be in the center stage at ICSTAR-2025

Most Popular

ATUA AI (TUA) develops cutting-edge AI infrastructure to optimize distributed operations

October 11, 20020 Views

10 things you should never say to an AI chatbot

November 10, 20040 Views

Character.AI faces lawsuit over child safety concerns

December 12, 20050 Views
© 2025 karachichronicle. Designed by karachichronicle.
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.