Close Menu
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

Macron warns about “worst scenarios.”

Amber heard about his first acting role since the Johnny Depp Trial. In her “Theatrical Age” with Jeremy O. Harris’ new play |

Senior mission warns that Iran-Israel conflict is deepening Afghanistan’s crisis

Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
Facebook X (Twitter) Instagram Pinterest Vimeo
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World
Karachi Chronicle
You are at:Home » The role of direct air capture in achieving climate-neutral aviation
World

The role of direct air capture in achieving climate-neutral aviation

Adnan MaharBy Adnan MaharJanuary 11, 2025No Comments14 Mins Read1 Views
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


Klöwer, M. et al. Quantifying aviation’s contribution to global warming. Environ. Res. Lett. 16, 104027 (2021).

Article 
ADS 

Google Scholar 

Burkhardt, U., Bock, L. & Bier, A. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. Npj Clim. Atmos. Sci. 1, 1–7 (2018).

Article 
CAS 
MATH 

Google Scholar 

Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 9, 1824 (2018).

Article 
ADS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Lee, D. S. et al. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021).

Article 
CAS 

Google Scholar 

Airbus. Global Market Forecast 2018-2037, Global Networks, Global Citizens (2018).

Boeing. Commercial Market Outlook 2021-2040. https://www.boeing.com/commercial/market/commercial-market-outlook/ (2021).

Dray, L. et al. Cost and emissions pathways towards net-zero climate impacts in aviation. Nat. Clim. Change 12, 956–962 (2022).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Gössling, S. & Humpe, A. The global scale, distribution and growth of aviation: Implications for climate change. Glob. Environ. Change 65, 102194 (2020).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Grewe, V. et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID−19 effects. Nat. Commun. 12, 3841 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Terrenoire, E., Hauglustaine, D. A., Gasser, T. & Penanhoat, O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett. 14, 084019 (2019).

Article 
ADS 
CAS 

Google Scholar 

Gössling, S. & Humpe, A. Net-zero aviation: Time for a new business model? J. Air Transp. Manag. 107, 102353 (2023).

Article 

Google Scholar 

Larsson, J., Elofsson, A., Sterner, T. & Åkerman, J. International and national climate policies for aviation: a review. Clim. Policy 19, 787–799 (2019).

Article 
MATH 

Google Scholar 

Scheelhaase, J., Maertens, S., Grimme, W. & Jung, M. EU ETS versus CORSIA–A critical assessment of two approaches to limit air transport’s CO2 emissions by market-based measures. J. Air Transp. Manag. 67, 55–62 (2018).

Article 

Google Scholar 

Committee on Climate Change. Biomass in a Low-Carbon Economy. https://www.theccc.org.uk/publication/biomass-in-a-low-carbon-economy/ (2018).

Dooley, K., Christoff, P. & Nicholas, K. A. Co-producing climate policy and negative emissions: trade-offs for sustainable land-use. Glob. Sustain. 1, https://doi.org/10.1017/sus.2018.6 (2018).

Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Gnadt, A. R., Speth, R. L., Sabnis, J. S. & Barrett, S. R. H. Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Prog. Aerosp. Sci. 105, 1–30 (2019).

Article 

Google Scholar 

Noland, J. K. Hydrogen electric airplanes: a disruptive technological path to clean up the aviation sector. IEEE Electrification Mag. 9, 92–102 (2021).

Article 
MATH 

Google Scholar 

Peeters, P., Higham, J., Kutzner, D., Cohen, S. & Gössling, S. Are technology myths stalling aviation climate policy? Transp. Res. Part Transp. Environ. 44, 30–42 (2016).

Article 

Google Scholar 

Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).

Article 
MATH 

Google Scholar 

Becattini, V., Gabrielli, P. & Mazzotti, M. Role of Carbon Capture, Storage, and Utilization to Enable a Net-Zero-CO2-Emissions Aviation Sector. Ind. Eng. Chem. Res. 60, 6848–6862 (2021).

Article 
CAS 
MATH 

Google Scholar 

Becken, S. & Mackey, B. What role for offsetting aviation greenhouse gas emissions in a deep-cut carbon world? J. Air Transp. Manag. 63, 71–83 (2017).

Article 
MATH 

Google Scholar 

Bergero, C. et al. Pathways to net-zero emissions from aviation. Nat. Sustain. 6, 404–414 (2023).

Article 
MATH 

Google Scholar 

Brazzola, N., Patt, A. & Wohland, J. Definitions and implications of climate-neutral aviation. Nat. Clim. Change 12, 761–767 (2022).

Article 
ADS 

Google Scholar 

Sacchi, R. et al. How to make climate-neutral aviation fly. Nat. Commun. 14, 3989 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Scheelhaase, J., Maertens, S. & Grimme, W. Synthetic fuels in aviation – Current barriers and potential political measures. Transp. Res. Procedia 43, 21–30 (2019).

Article 

Google Scholar 

Terwel, R. & Kerkhoven, J. Carbon Neutral Aviation with Current Enginge Technology: The Take-off of Synthetic Kerosene Production in the Netherlands. 62. https://kalavasta.com/assets/reports/Kalavasta_Carbon_Neutral_Aviation.pdf (2018).

Timmons, D. & Terwel, R. Economics of aviation fuel decarbonization: A preliminary assessment. J. Clean. Prod. 369, 133097 (2022).

Article 
MATH 

Google Scholar 

Fuhrman, J. et al. Food–energy–water implications of negative emissions technologies in a +1.5 °C future. Nat. Clim. Change 10, 920–927 (2020).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Fuhrman, J. et al. The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environ. Res. Lett. 16, 114012 (2021).

Terlouw, T., Treyer, K., Bauer, C. & Mazzotti, M. Life Cycle Assessment of Direct Air Carbon Capture and Storage with Low-Carbon Energy Sources. Environ. Sci. Technol. 55, 11397–11411 (2021).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar 

The Royal Society. Net Zero Aviation Fuels: Resource Requirements and Environmental Impacts. (London, UK, 2023).

Ali, M. et al. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth-Sci. Rev. 225, 103895 (2022).

Article 
CAS 
MATH 

Google Scholar 

Andreoni, P., Emmerling, J. & Tavoni, M. Inequality repercussions of financing negative emissions. Nat. Clim. Change 1–7 https://doi.org/10.1038/s41558-023-01870-7 (2023)

Küng, L. et al. A roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storage. Energy Environ. Sci. https://doi.org/10.1039/D3EE01008B (2023)

Meckling, J. & Biber, E. A policy roadmap for negative emissions using direct air capture. Nat. Commun. 12, 2051 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Nemet, G. F. How Solar Energy Became Cheap: A Model for Low-Carbon Innovation. (Routledge, 2019).

Young, J. et al. The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth 0, (2023).

Owen, A., Burke, J. & Serin, E. Who pays for BECCS and DACCS in the UK: designing equitable climate policy. Clim. Policy 22, 1050–1068 (2022).

Article 

Google Scholar 

Addepalli, S., Pagalday, G., Salonitis, K. & Roy, R. Socio-economic and demographic factors that contribute to the growth of the civil aviation industry. Procedia Manuf. 19, 2–9 (2018).

Article 

Google Scholar 

Nemet, G. F. et al. Near-term deployment of novel carbon removal to facilitate longer-term deployment. Joule 0, (2023).

IPCC. Global Warming of 1.5 °C.An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (2018).

IPCC. Summary for Policymakers. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).

Cames, M., Chaudry, S., Göckeler, K., Kasten, P. & Kurth, S. E.-Fuels versus DACCS. https://www.transportenvironment.org/wp-content/uploads/2021/08/2021_08_TE_study_efuels_DACCS.pdf (2021).

Braun-Unkhoff, M., Riedel, U. & Wahl, C. About the emissions of alternative jet fuels. CEAS Aeronaut. J. 8, 167–180 (2017).

Article 
MATH 

Google Scholar 

Voigt, C. et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Commun. Earth Environ. 2, 1–10 (2021).

Article 

Google Scholar 

PwC. Green hydrogen economy – predicted development of tomorrow. PwC https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html (2023).

World Energy Council. World Energy Insights: Executive Summary Regional Insights Into Low-Carbon Hydrogen Scale-Up. https://www.worldenergy.org/assets/downloads/World_Energy_Insights_Executive_Summary_Regional_insights_into_low-carbon_hydrogen_scale_up_April_2022.pdf?v=1680701563 (2022).

Malm, A. & Carton, W. Seize the Means of Carbon Removal: The Political Economy of Direct Air Capture. Hist. Mater. 29, 3–48 (2021).

Article 
MATH 

Google Scholar 

Arning, K. et al. Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125, 235–249 (2019).

Article 

Google Scholar 

Arning, K., Linzenich, A., Engelmann, L. & Ziefle, M. More green or less black? How benefit perceptions of CO2 reductions vs. fossil resource savings shape the acceptance of CO2-based fuels and their conversion technology. Energy Clim. Change 2, 100025 (2021).

Article 
CAS 
MATH 

Google Scholar 

Markusson, N., McLaren, D. & Tyfield, D. Towards a cultural political economy of mitigation deterrence by negative emissions technologies (NETs). Glob. Sustain. 1, e10 (2018).

Article 

Google Scholar 

Satterfield, T., Nawaz, S. & St-Laurent, G. P. Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’. Clim. Change 176, 14 (2023).

Article 
ADS 
CAS 

Google Scholar 

Net Zero Tracker. Net Zero Tracker. https://zerotracker.net/ (2024).

UK Department for Transport. Jet Zero Strategy – Delivering Net Zero Aviation by 2050. https://assets.publishing.service.gov.uk/media/62e931d48fa8f5033896888a/jet-zero-strategy.pdf (2022).

Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31, 1257–1274 (2002).

Article 
MATH 

Google Scholar 

Kemp, R., Schot, J. & Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strateg. Manag. 10, 175–198 (1998).

Article 
MATH 

Google Scholar 

Kemp, R. & Volpi, M. The diffusion of clean technologies: a review with suggestions for future diffusion analysis. J. Clean. Prod. 16, S14–S21 (2008).

Article 
MATH 

Google Scholar 

Roberts, C. et al. The politics of accelerating low-carbon transitions: Towards a new research agenda. Energy Res. Soc. Sci. 44, 304–311 (2018).

Article 
MATH 

Google Scholar 

Rogers, E. M. Diffusion of Innovations. J. Pharm. Sci. 52, 612 (1963).

MATH 

Google Scholar 

Brazzola, N., Moretti, C., Sievert, K., Patt, A. & Lilliestam, J. Utilizing CO2 as a strategy to scale up Direct Air Capture may face fewer short-term barriers than directly storing CO2. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ad3b1f (2024)

Kayak. Search Flights, Hotels & Rental Cars | KAYAK. https://www.kayak.com/ (2023).

Teoh, R., Schumann, U., Majumdar, A. & Stettler, M. E. J. Mitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoption. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b05608 (2020).

Article 
PubMed 

Google Scholar 

Teoh, R. et al. Targeted use of sustainable aviation fuel to maximize climate benefits. Environ. Sci. Technol. 56, 17246–17255 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Transport & Environment. The easy fix to air pollution linked to planes. Transport & Environment https://www.transportenvironment.org/articles/the-easy-fix-to-air-pollution-linked-to-planes (2024).

Brons, M., Pels, E., Nijkamp, P. & Rietveld, P. Price elasticities of demand for passenger air travel: a meta-analysis. J. Air Transp. Manag. 8, 165–175 (2002).

Article 
MATH 

Google Scholar 

Molloy, J., Melo, P. C., Graham, D. J., Majumdar, A. & Ochieng, W. Y. Role of air travel demand elasticities in reducing aviation’s carbon dioxide emissions: evidence for european airlines. Transp. Res. Rec. 2300, 31–41 (2012).

Article 

Google Scholar 

International Civil Aviation Organisation. Long term global aspirational goal (LTAG) for international aviation. https://www.icao.int/environmental-protection/Pages/LTAG.aspx (2022).

European Commission. ReFuelEU Aviation – European Commission. https://transport.ec.europa.eu/transport-modes/air/environment/refueleu-aviation_en (2024).

IRENA. Renewable Power Generation Costs in 2022. https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022 (2023).

Kost, C. et al. Levelized Cost of Electricity – Renewable Energy Technologies. https://www.ise.fraunhofer.de/en/publications/studies/cost-of-electricity.html (2021).

Grahn, M. et al. Review of electrofuel feasibility—cost and environmental impact. Prog. Energy 4, 032010 (2022).

Article 
ADS 
MATH 

Google Scholar 

Oil Change International. Dirty Energy Dominance: Dependent on Denial. https://priceofoil.org/content/uploads/2017/10/OCI_US-Fossil-Fuel-Subs-2015−16_Final_Oct2017.pdf (2017).

Luman, R. & Gerben, H. Synthetic fuel could be the answer to aviation’s net-zero goal. ING Think https://think.ing.com/articles/synthetic-fuels-answer-to-aviations-net-zero-goal/ (2023).

Lufthansa. Lufthansa Group introduces Environmental Cost Surcharge. Lufthansa Group introduces Environmental Cost Surcharge https://newsroom.lufthansagroup.com/en/lufthansa-group-introduces-environmental-cost-surcharge/ (2024).

Schoots, K., Ferioli, F., Kramer, G. J. & van der Zwaan, B. C. C. Learning curves for hydrogen production technology: An assessment of observed cost reductions. Int. J. Hydrog. Energy 33, 2630–2645 (2008).

Article 
ADS 
CAS 

Google Scholar 

Sievert, K., Schmidt, T. S. & Steffen, B. Considering technology characteristics to project future costs of direct air capture. Joule 8, 979–999 (2024).

Article 
CAS 
MATH 

Google Scholar 

Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change 1–10 https://doi.org/10.1038/s41558-023-01604-9. (2023)

Edwards, M. R. et al. Modeling direct air carbon capture and storage in a 1.5 °C climate future using historical analogs. Proc. Natl Acad. Sci. USA 121, e2215679121 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022).

Article 
ADS 

Google Scholar 

IEA. Renewable Electricity – Analysis. https://www.iea.org/reports/renewable-electricity (2022).

Angliviel de La Beaumelle, N. et al. The Global Technical, Economic, and Feasible Potential of Renewable Electricity. Annu. Rev. Environ. Resour. 48, 419–449 (2023).

Article 
MATH 

Google Scholar 

Riebl, S., Braun-Unkhoff, M. & Riedel, U. A study on the emissions of alternative aviation fuels. J. Eng. Gas Turbines Power 139, (2017).

Chen, C.-C. & Gettelman, A. Simulated 2050 aviation radiative forcing from contrails and aerosols. Atmos. Chem. Phys. 16, 7317–7333 (2016).

Article 
ADS 
CAS 

Google Scholar 

IATA. Passenger demand recovery continued in 2021 but omicron having impact. https://www.iata.org/en/pressroom/2022-releases/2022-01-25-02/ (2021).

IEA. World Energy Outlook 2021. 386 https://www.iea.org/reports/world-energy-outlook-2021 (2021).

U.S. Energy Information Administration. International Energy Outlook – U.S. Energy Information Administration (EIA). https://www.eia.gov/outlooks/ieo/tables_side_xls.php (2021).

Bain & Company. Air Travel Forecast to 2030: The Recovery and the Carbon Challenge. Bain https://www.bain.com/insights/air-travel-forecast-interactive/ (2023).

Filippone, A. Advanced Aircraft Flight Performance. (Cambridge University Press, 2012).

Anuar, A., Undavalli, V. K., Khandelwal, B. & Blakey, S. Effect of fuels, aromatics and preparation methods on seal swell. Aeronaut. J. 125, 1542–1565 (2021).

Article 

Google Scholar 

Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).

Article 
ADS 
CAS 

Google Scholar 

Zickfeld, K. et al. Net-zero approaches must consider Earth system impacts to achieve climate goals. Nat. Clim. Change 13, 1298–1305 (2023).

Article 
ADS 
MATH 

Google Scholar 

Moretti, C., Moro, A., Edwards, R., Rocco, M. V. & Colombo, E. Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products. Appl. Energy 206, 372–381 (2017).

Article 
ADS 
CAS 

Google Scholar 

Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M. & Uratani, J. M. Decarbonizing the oil refining industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Res. Soc. Sci. 89, 102542 (2022).

Article 

Google Scholar 

Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Delpierre, M., Quist, J., Mertens, J., Prieur-Vernat, A. & Cucurachi, S. Assessing the environmental impacts of wind-based hydrogen production in the Netherlands using ex-ante LCA and scenarios analysis. J. Clean. Prod. 299, 126866 (2021).

Article 
CAS 

Google Scholar 

Adnan, M. A. & Kibria, M. G. Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways. Appl. Energy 278, 115614 (2020).

Article 
CAS 
MATH 

Google Scholar 

McQueen, N. et al. Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States. Environ. Sci. Technol. 54, 7542–7551 (2020).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar 

Ringbeck, J., Gautam, A. & Pietsch, T. Endangered Growth: How the Price of Oil Challenges International Travel & Tourism Growth. in The Travel & Tourismus Competitiveness Report 2009 525 (World Economic Forum, 2009).

Damodaran, A. Operating and Net Margins – Stern School of Business, New York University. https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/margin.html (2024).

IRENA. Making the Breakthrough: Green Hydrogen Policies and Technology Costs. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_Hydrogen_breakthrough_2021.pdf?la=en&hash=40FA5B8AD7AB1666EECBDE30EF458C45EE5A0AA6 (2021).

Matute, G., Yusta, J. M. & Correas, L. C. Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: A case study in Spain applied to mobility with FCEVs. Int. J. Hydrog. Energy 44, 17431–17442 (2019).

Article 
ADS 
CAS 

Google Scholar 

Reksten, A. H., Thomassen, M. S., Møller-Holst, S. & Sundseth, K. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development. Int. J. Hydrog. Energy 47, 38106–38113 (2022).

Article 
ADS 
CAS 

Google Scholar 

Terlouw, T., Bauer, C., McKenna, R. & Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. https://doi.org/10.1039/D2EE01023B (2022)

Elsernagawy, O. Y. H. et al. Thermo-economic analysis of reverse water-gas shift process with different temperatures for green methanol production as a hydrogen carrier. J. CO2 Util. 41, 101280 (2020).

Article 
CAS 

Google Scholar 

IATA. Jet Fuel Price Monitor. https://www.iata.org/en/publications/economics/fuel-monitor/ (2024).

Emmerling, J. et al. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 14, 104008 (2019).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Moretti, C. Reflecting on the environmental impact of the captured carbon feedstock. Sci. Total Environ. 854, 158694 (2023).

Article 
CAS 
PubMed 
MATH 

Google Scholar 

Allgoewer, L. et al. Cost-effective locations for producing fuels and chemicals from carbon dioxide and low-carbon hydrogen in the future. Ind. Eng. Chem. Res. 63, 13660–13676 (2024).

Article 
CAS 
MATH 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Telegram Email
Previous ArticleWe interviewed Aria, the $175,000 nearly humanoid robot at CES 2025
Next Article Manufacturing transformation: clusters near infrastructure hubs, tax reform likely in Budget 2025
Adnan Mahar
  • Website

Adnan is a passionate doctor from Pakistan with a keen interest in exploring the world of politics, sports, and international affairs. As an avid reader and lifelong learner, he is deeply committed to sharing insights, perspectives, and thought-provoking ideas. His journey combines a love for knowledge with an analytical approach to current events, aiming to inspire meaningful conversations and broaden understanding across a wide range of topics.

Related Posts

Macron warns about “worst scenarios.”

June 27, 2025

Senior mission warns that Iran-Israel conflict is deepening Afghanistan’s crisis

June 23, 2025

Europe must arm itself in a volatile world

June 23, 2025
Leave A Reply Cancel Reply

Top Posts

20 Most Anticipated Sex Movies of 2025

January 22, 2025128 Views

President Trump’s SEC nominee Paul Atkins marries multi-billion dollar roof fortune

December 14, 2024104 Views

Alice Munro’s Passive Voice | New Yorker

December 23, 202460 Views

How to tell the difference between fake and genuine Adidas Sambas

December 26, 202442 Views
Don't Miss
AI June 1, 2025

Dig into Google Deepmind CEO “Shout Out” Chip Engineers and Openai CEO Sam Altman, Sundar Pichai responds with emojis

Demis Hassabis, CEO of Google Deepmind, has expanded public approval to its chip engineers, highlighting…

Google, Nvidia invests in AI startup Safe Superintelligence, co-founder of Openai Ilya Sutskever

This $30 billion AI startup can be very strange by a man who said that neural networks may already be aware of it

As Deepseek and ChatGpt Surge, is Delhi behind?

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

About Us
About Us

Welcome to Karachi Chronicle, your go-to source for the latest and most insightful updates across a range of topics that matter most in today’s fast-paced world. We are dedicated to delivering timely, accurate, and engaging content that covers a variety of subjects including Sports, Politics, World Affairs, Entertainment, and the ever-evolving field of Artificial Intelligence.

Facebook X (Twitter) Pinterest YouTube WhatsApp
Our Picks

Macron warns about “worst scenarios.”

Amber heard about his first acting role since the Johnny Depp Trial. In her “Theatrical Age” with Jeremy O. Harris’ new play |

Senior mission warns that Iran-Israel conflict is deepening Afghanistan’s crisis

Most Popular

ATUA AI (TUA) develops cutting-edge AI infrastructure to optimize distributed operations

October 11, 20020 Views

10 things you should never say to an AI chatbot

November 10, 20040 Views

Character.AI faces lawsuit over child safety concerns

December 12, 20050 Views
© 2025 karachichronicle. Designed by karachichronicle.
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.