Close Menu
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

The world’s largest air force with the F-35 fleet in 2025

AI systems learn from many types of scientific information and run experiments to discover new materials | MIT News

Among the most troublesome relationships in healthcare AI

Facebook X (Twitter) Instagram
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
Facebook X (Twitter) Instagram Pinterest Vimeo
Karachi Chronicle
  • Home
  • AI
  • Business
  • Entertainment
  • Fashion
  • Politics
  • Sports
  • Tech
  • World
Karachi Chronicle
You are at:Home » Programmable quantum circuits in a large-scale photonic waveguide array
Tech

Programmable quantum circuits in a large-scale photonic waveguide array

Adnan MaharBy Adnan MaharFebruary 3, 2025No Comments9 Mins Read0 Views
Facebook Twitter Pinterest Telegram LinkedIn Tumblr Email Reddit
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. der Phys. 48, 771 (2000).

Article 
ADS 
MATH 

Google Scholar 

Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001).

Article 
ADS 
MATH 

Google Scholar 

Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273 (2020).

Article 
ADS 

Google Scholar 

O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687 (2009).

Article 
ADS 
MATH 

Google Scholar 

Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747 (2015).

Article 
ADS 
MATH 

Google Scholar 

Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008).

Article 
ADS 

Google Scholar 

Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009).

Article 
ADS 
MATH 

Google Scholar 

Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 6, 45 (2011).

Article 
ADS 
MATH 

Google Scholar 

Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

Article 
ADS 

Google Scholar 

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460 (2016).

Article 
ADS 

Google Scholar 

Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).

Article 
MathSciNet 
MATH 

Google Scholar 

Bao, J. et al. Very-large-scale integrated quantum graph photonics, Nature Photonics, 1 https://doi.org/10.1038/s41566-023-01187-z (2023).

Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207 (2020).

Article 
ADS 
MATH 

Google Scholar 

Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447 (2017).

Article 
ADS 
MATH 

Google Scholar 

Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80 (2019).

Article 
ADS 

Google Scholar 

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441 (2017).

Article 
ADS 
MATH 

Google Scholar 

Saygin, M. Y. et al. Robust architecture for programmable universal unitaries. Phys. Rev. Lett. 124, 010501 (2020).

Article 
ADS 
MATH 

Google Scholar 

Skryabin, N. N., Skryabin, N. N., Dyakonov, I. V., Saygin, M. Y. & Kulik, S. P. Waveguide-lattice-based architecture for multichannel optical transformations. Opt. Express 29, 26058 (2021).

Article 
ADS 
MATH 

Google Scholar 

Petrovic, J., Krsic, J., Veerman, P. J. J., & Maluckov, A. A new concept for design of photonic integrated circuits with the ultimate density and low loss, Preprint at https://arxiv.org/abs/2108.00928 (2021).

Tanomura, R. et al. Scalable and Robust Photonic Integrated Unitary Converter Based on Multiplane Light Conversion. Phys. Rev. Appl. 17, 024071 (2022).

Article 
ADS 

Google Scholar 

Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817 (2003).

Article 
ADS 
MATH 

Google Scholar 

Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500 (2010).

Article 
ADS 
MATH 

Google Scholar 

Leykam, D., Solntsev, A. S., Sukhorukov, A. A. & Desyatnikov, A. S. Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays. Phys. Rev. A 92, 033815 (2015).

Article 
ADS 

Google Scholar 

Doyle, C. et al. Biphoton entanglement of topologically distinct modes. Phys. Rev. A 105, 023513 (2022).

Article 
ADS 
MATH 

Google Scholar 

Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568 (2018).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar 

Chapman, R. J. et al. Experimental perfect state transfer of an entangled photonic qubit. Nat. Commun. 7, 11339 (2016).

Article 
ADS 
MATH 

Google Scholar 

Tambasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, eaat3187 (2018).

Article 
ADS 
MATH 

Google Scholar 

Blanco-Redondo, A. Topological nanophotonics: Toward robust quantum circuits. Proc. IEEE 108, 837 (2020).

Article 
MATH 

Google Scholar 

Compagno, E., Banchi, L. & Bose, S. Toolbox for linear optics in a one-dimensional lattice via minimal control. Phys. Rev. A 92, 022701 (2015).

Article 
ADS 
MATH 

Google Scholar 

Lahini, Y., Steinbrecher, G. R., Bookatz, A. D. & Englund, D. Quantum logic using correlated one-dimensional quantum walks. npj Quantum Inf. 4, 1 (2018).

Article 
ADS 

Google Scholar 

Chapman, R. J., Häusler, S., Finco, G., Kaufmann, F. & Grange, R. Quantum logical controlled-not gate in a lithium niobate-on-insulator photonic quantum walk. Quantum Sci. Technol. 9, 015016 (2023).

Article 
ADS 

Google Scholar 

Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. & Silberberg, Y. Experimental observation of linear and nonlinear optical bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999).

Article 
ADS 
MATH 

Google Scholar 

Paspalakis, E. Adiabatic three-waveguide directional coupler. Opt. Commun. 258, 30 (2006).

Article 
ADS 
MATH 

Google Scholar 

Lahini, Y. et al. Effect of nonlinearity on adiabatic evolution of light. Phys. Rev. Lett. 101, 193901 (2008).

Article 
ADS 

Google Scholar 

Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

Article 
ADS 

Google Scholar 

Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

Article 
ADS 

Google Scholar 

Youssry, A. & Peruzzo, A. Universal programmable waveguide arrays, Preprint at https://arxiv.org/abs/2411.12610 (2024).

Yang, Y. et al. Programmable high-dimensional hamiltonian in a photonic waveguide array. Nat. Commun. 15, 50 (2024).

Article 
ADS 
MATH 

Google Scholar 

Youssry, A., Chapman, R. J., Peruzzo, A., Ferrie, C. & Tomamichel, M. Modeling and control of a reconfigurable photonic circuit using deep learning. Quantum Sci. Technol. 5, 025001 (2020).

Article 
ADS 

Google Scholar 

Youssry, A. et al. Experimental graybox quantum system identification and control. npj Quantum Inf. 10, 9 (2024).

Article 
ADS 
MATH 

Google Scholar 

O’Brien, J. L. Optical quantum computing. Science 318, 1567 (2007).

Article 
ADS 
MATH 

Google Scholar 

Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).

Article 
ADS 
MATH 

Google Scholar 

Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

Article 
ADS 
MATH 

Google Scholar 

Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779 (2006).

Article 
ADS 
MATH 

Google Scholar 

Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).

Article 
ADS 
MATH 

Google Scholar 

Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285 (2018).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar 

Hoch, F. et al. Reconfigurable continuously-coupled 3d photonic circuit for boson sampling experiments. npj Quantum Inf. 8, 1 (2022).

Article 
MATH 

Google Scholar 

Ceccarelli, F. et al. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. Laser Photonics Rev. 14, 2000024 (2020).

Article 
ADS 
MATH 

Google Scholar 

Prencipe, A. & Gallo, K. Electro- and thermo-optics response of x-cut thin film linbo3 waveguides. IEEE J. Quantum Electron. 59, 1 (2023).

Article 
MATH 

Google Scholar 

Rahimi-Keshari, S. et al. Direct characterization of linear-optical networks. Opt. express 21, 13450 (2013).

Article 
ADS 

Google Scholar 

Hoch, F. et al. Characterization of multimode linear optical networks. Adv. Photonics Nexus 2, 016007 (2023).

Article 
MATH 

Google Scholar 

Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O’brien, J. L. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).

Article 
ADS 

Google Scholar 

Laing, A. & O’Brien, J. L. Super-stable tomography of any linear optical device, Preprint at https://arxiv.org/abs/1208.2868 (2012).

Dhand, I., Khalid, A., Lu, H. & Sanders, B. C. Accurate and precise characterization of linear optical interferometers. J. Opt. 18, 035204 (2016).

Article 
ADS 
MATH 

Google Scholar 

Lazin, M. F., Shelton, C. R., Sandhofer, S. & Wong, B. M. High-dimensional multi-fidelity bayesian optimization for quantum control. Mach. Learn.: Sci. Technol. 4, 045014 (2023).

ADS 
MATH 

Google Scholar 

O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264 (2003).

Article 
ADS 

Google Scholar 

Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652 (2021).

Article 
ADS 

Google Scholar 

White, D. et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441 (2019).

Article 
ADS 

Google Scholar 

Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

Article 
ADS 

Google Scholar 

Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).

Article 
ADS 
MATH 

Google Scholar 

Yang, Y., Weiss, T., Arianfard, H., Youssry, A. & Peruzzo, A. A fixed phase tunable directional coupler based on coupling tuning. Sci. Rep. 14, 24291 (2024).

Article 

Google Scholar 

Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020).

Article 
MATH 

Google Scholar 

Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar 

Rechtsman, M. C. et al. Topological protection of photonic path entanglement. Optica 3, 925 (2016).

Article 
ADS 
MATH 

Google Scholar 

Wang, Y. et al. Topological protection of two-photon quantum correlation on a photonic chip. Optica 6, 955 (2019).

Article 
ADS 
MATH 

Google Scholar 

Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285 (2012).

Article 
MATH 

Google Scholar 

Lenzini, F., Kasture, S., Haylock, B. & Lobino, M. Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. Opt. Express 23, 1748 (2015).

Article 
ADS 

Google Scholar 

Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source (laser photonics rev. 11(3)/2017). Laser Photonics Rev. 11, 1770034 (2017).

Article 
ADS 
MATH 

Google Scholar 

Yamada, S. & Minakata, M. DC Drift Phenomena in LiNbO3 Optical Waveguide Devices. Jpn. J. Appl. Phys. 20, 733 (1981).

Article 
ADS 
MATH 

Google Scholar 

Lenzini, F. et al. Integrated photonic platform for quantum information with continuous variables. Sci. Adv. 4, eaat9331 (2018).

Article 
ADS 
MATH 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Reddit WhatsApp Telegram Email
Previous Article10 Essential Pixar Movies, Ranked
Next Article Openai will announce a new AI agent for research
Adnan Mahar
  • Website

Adnan is a passionate doctor from Pakistan with a keen interest in exploring the world of politics, sports, and international affairs. As an avid reader and lifelong learner, he is deeply committed to sharing insights, perspectives, and thought-provoking ideas. His journey combines a love for knowledge with an analytical approach to current events, aiming to inspire meaningful conversations and broaden understanding across a wide range of topics.

Related Posts

Googleबनी$ 3

September 16, 2025

Tesla engineers will resign in eight years. He points out CEO Elon Musk as the main reason, accusing him of “liing to the public and manipulating him…”

September 12, 2025

Ant Group unveils its own Tesla Optimus competitor, R1 humanoid robot

September 11, 2025
Leave A Reply Cancel Reply

Top Posts

20 Most Anticipated Sex Movies of 2025

January 22, 2025456 Views

President Trump’s SEC nominee Paul Atkins marries multi-billion dollar roof fortune

December 14, 2024122 Views

How to tell the difference between fake and genuine Adidas Sambas

December 26, 202485 Views

Alice Munro’s Passive Voice | New Yorker

December 23, 202474 Views
Don't Miss
AI September 25, 2025

AI systems learn from many types of scientific information and run experiments to discover new materials | MIT News

Machine learning models can speed up discovery of new materials by making predictions and proposing…

Among the most troublesome relationships in healthcare AI

Does access to AI become a fundamental human right? Sam Altman says, “Everyone would want…”

Google’s Gemini AI is on TV

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

About Us
About Us

Welcome to Karachi Chronicle, your go-to source for the latest and most insightful updates across a range of topics that matter most in today’s fast-paced world. We are dedicated to delivering timely, accurate, and engaging content that covers a variety of subjects including Sports, Politics, World Affairs, Entertainment, and the ever-evolving field of Artificial Intelligence.

Facebook X (Twitter) Pinterest YouTube WhatsApp
Our Picks

The world’s largest air force with the F-35 fleet in 2025

AI systems learn from many types of scientific information and run experiments to discover new materials | MIT News

Among the most troublesome relationships in healthcare AI

Most Popular

10 things you should never say to an AI chatbot

November 10, 20040 Views

Character.AI faces lawsuit over child safety concerns

December 12, 20050 Views

Analyst warns Salesforce investors about AI agent optimism

July 1, 20070 Views
© 2025 karachichronicle. Designed by karachichronicle.
  • Home
  • About us
  • Advertise
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.