DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. der Phys. 48, 771 (2000).
Google Scholar
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001).
Google Scholar
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273 (2020).
Google Scholar
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687 (2009).
Google Scholar
Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747 (2015).
Google Scholar
Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008).
Google Scholar
Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009).
Google Scholar
Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 6, 45 (2011).
Google Scholar
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).
Google Scholar
Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460 (2016).
Google Scholar
Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).
Google Scholar
Bao, J. et al. Very-large-scale integrated quantum graph photonics, Nature Photonics, 1 https://doi.org/10.1038/s41566-023-01187-z (2023).
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207 (2020).
Google Scholar
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447 (2017).
Google Scholar
Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80 (2019).
Google Scholar
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441 (2017).
Google Scholar
Saygin, M. Y. et al. Robust architecture for programmable universal unitaries. Phys. Rev. Lett. 124, 010501 (2020).
Google Scholar
Skryabin, N. N., Skryabin, N. N., Dyakonov, I. V., Saygin, M. Y. & Kulik, S. P. Waveguide-lattice-based architecture for multichannel optical transformations. Opt. Express 29, 26058 (2021).
Google Scholar
Petrovic, J., Krsic, J., Veerman, P. J. J., & Maluckov, A. A new concept for design of photonic integrated circuits with the ultimate density and low loss, Preprint at https://arxiv.org/abs/2108.00928 (2021).
Tanomura, R. et al. Scalable and Robust Photonic Integrated Unitary Converter Based on Multiplane Light Conversion. Phys. Rev. Appl. 17, 024071 (2022).
Google Scholar
Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817 (2003).
Google Scholar
Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500 (2010).
Google Scholar
Leykam, D., Solntsev, A. S., Sukhorukov, A. A. & Desyatnikov, A. S. Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays. Phys. Rev. A 92, 033815 (2015).
Google Scholar
Doyle, C. et al. Biphoton entanglement of topologically distinct modes. Phys. Rev. A 105, 023513 (2022).
Google Scholar
Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568 (2018).
Google Scholar
Chapman, R. J. et al. Experimental perfect state transfer of an entangled photonic qubit. Nat. Commun. 7, 11339 (2016).
Google Scholar
Tambasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, eaat3187 (2018).
Google Scholar
Blanco-Redondo, A. Topological nanophotonics: Toward robust quantum circuits. Proc. IEEE 108, 837 (2020).
Google Scholar
Compagno, E., Banchi, L. & Bose, S. Toolbox for linear optics in a one-dimensional lattice via minimal control. Phys. Rev. A 92, 022701 (2015).
Google Scholar
Lahini, Y., Steinbrecher, G. R., Bookatz, A. D. & Englund, D. Quantum logic using correlated one-dimensional quantum walks. npj Quantum Inf. 4, 1 (2018).
Google Scholar
Chapman, R. J., Häusler, S., Finco, G., Kaufmann, F. & Grange, R. Quantum logical controlled-not gate in a lithium niobate-on-insulator photonic quantum walk. Quantum Sci. Technol. 9, 015016 (2023).
Google Scholar
Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. & Silberberg, Y. Experimental observation of linear and nonlinear optical bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999).
Google Scholar
Paspalakis, E. Adiabatic three-waveguide directional coupler. Opt. Commun. 258, 30 (2006).
Google Scholar
Lahini, Y. et al. Effect of nonlinearity on adiabatic evolution of light. Phys. Rev. Lett. 101, 193901 (2008).
Google Scholar
Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Google Scholar
Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).
Google Scholar
Youssry, A. & Peruzzo, A. Universal programmable waveguide arrays, Preprint at https://arxiv.org/abs/2411.12610 (2024).
Yang, Y. et al. Programmable high-dimensional hamiltonian in a photonic waveguide array. Nat. Commun. 15, 50 (2024).
Google Scholar
Youssry, A., Chapman, R. J., Peruzzo, A., Ferrie, C. & Tomamichel, M. Modeling and control of a reconfigurable photonic circuit using deep learning. Quantum Sci. Technol. 5, 025001 (2020).
Google Scholar
Youssry, A. et al. Experimental graybox quantum system identification and control. npj Quantum Inf. 10, 9 (2024).
Google Scholar
O’Brien, J. L. Optical quantum computing. Science 318, 1567 (2007).
Google Scholar
Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).
Google Scholar
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).
Google Scholar
Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779 (2006).
Google Scholar
Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).
Google Scholar
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285 (2018).
Google Scholar
Hoch, F. et al. Reconfigurable continuously-coupled 3d photonic circuit for boson sampling experiments. npj Quantum Inf. 8, 1 (2022).
Google Scholar
Ceccarelli, F. et al. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. Laser Photonics Rev. 14, 2000024 (2020).
Google Scholar
Prencipe, A. & Gallo, K. Electro- and thermo-optics response of x-cut thin film linbo3 waveguides. IEEE J. Quantum Electron. 59, 1 (2023).
Google Scholar
Rahimi-Keshari, S. et al. Direct characterization of linear-optical networks. Opt. express 21, 13450 (2013).
Google Scholar
Hoch, F. et al. Characterization of multimode linear optical networks. Adv. Photonics Nexus 2, 016007 (2023).
Google Scholar
Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O’brien, J. L. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).
Google Scholar
Laing, A. & O’Brien, J. L. Super-stable tomography of any linear optical device, Preprint at https://arxiv.org/abs/1208.2868 (2012).
Dhand, I., Khalid, A., Lu, H. & Sanders, B. C. Accurate and precise characterization of linear optical interferometers. J. Opt. 18, 035204 (2016).
Google Scholar
Lazin, M. F., Shelton, C. R., Sandhofer, S. & Wong, B. M. High-dimensional multi-fidelity bayesian optimization for quantum control. Mach. Learn.: Sci. Technol. 4, 045014 (2023).
Google Scholar
O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264 (2003).
Google Scholar
Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652 (2021).
Google Scholar
White, D. et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441 (2019).
Google Scholar
Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).
Google Scholar
Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).
Google Scholar
Yang, Y., Weiss, T., Arianfard, H., Youssry, A. & Peruzzo, A. A fixed phase tunable directional coupler based on coupling tuning. Sci. Rep. 14, 24291 (2024).
Google Scholar
Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Google Scholar
Rechtsman, M. C. et al. Topological protection of photonic path entanglement. Optica 3, 925 (2016).
Google Scholar
Wang, Y. et al. Topological protection of two-photon quantum correlation on a photonic chip. Optica 6, 955 (2019).
Google Scholar
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285 (2012).
Google Scholar
Lenzini, F., Kasture, S., Haylock, B. & Lobino, M. Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. Opt. Express 23, 1748 (2015).
Google Scholar
Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source (laser photonics rev. 11(3)/2017). Laser Photonics Rev. 11, 1770034 (2017).
Google Scholar
Yamada, S. & Minakata, M. DC Drift Phenomena in LiNbO3 Optical Waveguide Devices. Jpn. J. Appl. Phys. 20, 733 (1981).
Google Scholar
Lenzini, F. et al. Integrated photonic platform for quantum information with continuous variables. Sci. Adv. 4, eaat9331 (2018).
Google Scholar